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We develop an internal gauge theory using a covariant star product. The space-time is a symplectic

manifold endowed only with torsion but no curvature. It is shown that, in order to assure the restrictions

imposed by the associativity property of the star product, the torsion of the space-time has to be covariant

constant. An illustrative example is given and it is concluded that in this case the conditions necessary to

define a covariant star product on a symplectic manifold completely determine its connection.
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I. INTRODUCTION

Noncommutative gravity has been intensively studied in
the last years. One important motivation is the hope that
such a theory could offer the possibility to develop a
quantum theory of gravity, or at least to give an idea of
how this could be achieved [1–6]. There are two major
candidates to quantum gravity: string theory [7] and loop
quantum gravity [8]. Noncommutative geometry and, in
particular, gauge theory of gravity are intimately connected
with both these approaches and the overlaps are consider-
able [2]. String theory is one of the strongest motivations
for considering noncommutative space-time geometries
and noncommutative gravitation. It has been shown, for
example, that in the case when the end points of strings in a
theory of open strings are constrained to move onD branes
in a constant B-field background and one considers the
low-energy limit, then the full dynamics of the theory is
described by a gauge theory on a noncommutative space-
time [9]. Recently, it has been argued that the dynamics of
the noncommutative gravity arising from string theory [10]
is much richer than some versions proposed for noncom-
mutative gravity. It is suspected that the reason for this is
the noncovariance of the Moyal star product under space-
time diffeomorphisms. A geometrical approach to non-
commutative gravity, leading to a general theory of non-
commutative Riemann surfaces in which the problem of
the frame dependence of the star product is also recog-
nized, has been proposed in [11] (for further developments,
see [12,13]).

Now, one important problem is to develop a theory of
gravity considering curved noncommutative space-times.
The main difficulty is that the noncommutativity parameter
��� is usually taken to be constant, which breaks the
Lorentz invariance of the commutation relations between
coordinates [see (2.1) below], and implicitly of any non-
commutative field theory. One possible way to solve this
problem is to consider ��� depending on coordinates and
use a covariant star product. In [14] such a product has

been defined between differential forms and the property of
associativity was verified up to the second order in ���.
In this paper we will adopt the covariant star product

defined in [14] and extend the result to the case of Lie-
algebra-valued differential forms. We will follow the same
procedure as in our previous paper [15]. But, in order to
simplify the expression of the covariant product and to give
an illustrative example, we will consider the case when the
noncommutative space-time is a symplectic manifold M
endowed only with torsion (and no curvature). The restric-
tions imposed by such a covariant star product requires also
that the torsion is covariant constant. The motivation for
adopting such a manifold is that it allows the construction
of noncommutative teleparallel gravity (for the idea of
teleparallelism in gravity see [16]). It has been shown
that a very difficult problem like the definition of a tenso-
rial expression for the gravitational energy-momentum
density can be solved in teleparallel gravity [17,18]. This
density is conserved in a covariant sense. It has also been
argued that the quantization problem is much more conve-
nient to handle in teleparallel gravity [19] than in general
relativity, due to the possibility of decomposing torsion
into irreducible pieces under the global Lorentz group.
Teleparallel gravity is also a very natural candidate for

an effective noncommutative field theory of gravitation
[20]. In addition it possesses many features which makes
it particularly well suited for certain analyses. For instance
it enables a pure tensorial proof of the positivity of the
energy in general relativity [21], it yields a natural intro-
duction of Ashtekar variables [22], and makes it possible to
study the torsion at quantum level [23], for example, in the
gravitational coupling to spinor fields.
On the other hand, we can try to apply the covariant star

product to the case when the space-time is a symplectic
manifold which has only curvature, but the torsion van-
ishes. Then, the restriction imposed by the Jacobi identity
for the Poisson bracket requires also the vanishing curva-
ture. The corresponding connection is flat symplectic and
this reduces drastically the applicability area of the cova-
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riant star product. Of course, it is possible to have a
manifold with both curvature and torsion.

In Sec. II, considering a manifoldM endowed only with
torsion, we give the definition of the covariant star product
between two arbitrary Lie-algebra-valued differential
forms and some of its properties. Then, the star bracket
between such differential forms is introduced and some
examples are given.

Section III is devoted to the noncommutative internal
gauge theory formulated with the new covariant star prod-
uct. The noncommutative Lie-algebra-valued gauge poten-
tial and the field strength 2-form are defined and their
gauge transformation laws are established. It is shown
that the field strength is gauge covariant and satisfies a
deformed Bianchi identity.

An illustrative example is presented in Sec. IV. It is
shown that in our simple example, the conditions necessary
to define a covariant star product on a symplectic manifold
M completely determine its connection.

Section V is devoted to the discussion of the results and
to the interpretation of noncommutative gauge theory for-
mulated by using the covariant star product between Lie-
algebra-valued differential forms on symplectic manifolds.
Some other possible applications of this covariant star
product are also analyzed.

The Appendix contains a detailed verification of the
associativity property of the covariant star product includ-
ing only the torsion in its definition.

II. COVARIANT STAR PRODUCT

We consider a noncommutative space-time M endowed
with the coordinates x�, � ¼ 0, 1, 2, 3, satisfying the
commutation relation

½x�; x��? ¼ i���ðxÞ; (2.1)

where ���ðxÞ ¼ ����ðxÞ is a Poisson bivector [14]. The
space-time is organized as a Poisson manifold by introduc-
ing the Poisson bracket between two functions fðxÞ and
gðxÞ by

ff; gg ¼ ���@�f@�g: (2.2)

In order that the Poisson bracket satisfies the Jacobi iden-
tity, the bivector ���ðxÞ has to obey the condition [24,25]

���@��
�� þ ���@��

�� þ ���@��
�� ¼ 0: (2.3)

If a Poisson bracket is defined on M, then M is called a
Poisson manifold (see [24] for mathematical details).

Suppose now that the bivector ���ðxÞ has an inverse
!��ðxÞ, i.e.

���!�� ¼ �
�
� : (2.4)

If ! ¼ 1
2!��dx

� ^ dx� is nondegenerate ( det!�� � 0)

and closed (d! ¼ 0), then it is called a symplectic 2-
form and M is a symplectic manifold. It can be verified

that the condition d! ¼ 0 is equivalent with the Eq. (2.3)
[14,24,26]. In this paper we will consider only the case
when M is symplectic.
Because the gauge theories involve Lie-valued differen-

tial forms such as A ¼ Aa
�ðxÞTadx

� ¼ A�dx
�, A� ¼

Aa
�ðxÞTa, where Ta are the infinitesimal generators of a

symmetry group G, we need to generalize the definition of
the Poisson bracket to differential forms and define then an
associative star product for such cases. These problems
were solved in [14,24,26]. In [15] we generalized these
results to the case of Lie-algebra-valued differential forms.
This generalization has the effect that the commutator of
differential forms can be a commutator or an anticommu-
tator, depending on their degrees.
Assuming that ���ðxÞ is invertible, we can always write

the Poisson bracket fx; dxg in the form [14,24,26]

fx�; dx�g ¼ ������
��dx

�; (2.5)

where ��
�� are some functions of x transforming like a

connection under general coordinate transformations. As
��
�� is generally not symmetric, one can use the connection

1-forms

~�
�
� ¼ �

�
��dx�; �

�
� ¼ dx��

�
�� (2.6)

to define two kinds of covariant derivatives ~r and r,
respectively. The curvatures for these two connections are

~R �
��� ¼ @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��; (2.7)

R�
��� ¼ @��

�
�� � @��

�
�� þ ��

���
�
�� � ��

���
�
��: (2.8)

Because the connection coefficients ��
�� are not symmetric

(�
�
�� � �

�
��) the symplectic manifoldM has also a torsion

defined as usual [14]

T
�
�� ¼ �

�
�� � �

�
��: (2.9)

The connection r satisfies the identity [14]

½r�;r��	 ¼ �R�
���dx

� ^ i�	� T�
��r�	; (2.10)

and an analogous formula applies for ~r. Here, 	 is an
arbitrary differential k-form

	 ¼ 1

k!
	�1����k

dx�1 ^ � � � ^ dx�k (2.11)

and i�	 denotes the interior product which maps the
k-form 	 into a (k� 1)-form

i�	 ¼ 1

ðk� 1Þ!	��2����k
dx�2 ^ � � � ^ dx�k : (2.12)

It has been proven that in order for the Poisson bracket to
satisfy the Leibniz rule

dff; gg ¼ fdf; gg þ ff; dgg (2.13)

the bivector ���ðxÞ has to obey the property [14]
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~r ��
�� ¼ @��

�� þ ��
����� þ ��

���
�� ¼ 0: (2.14)

Thus ��� is covariant constant under ~r, and ~r is an almost
symplectic connection. One can use the Leibniz condition
(2.14) together with the Jacobi identity for the Poisson
bivector ��� to obtain the cyclic relation for torsionX

ð�;�;�Þ
������T�

�� ¼ 0: (2.15)

Note that while this relation shows that a torsion-free
connection identically satisfies the property (2.15), the
Jacobi identity does not require the connection to be tor-
sionless. Also note that (2.14) and the Jacobi identity for
the Poisson bivector can be combined to obtain the follow-
ing cyclic relation: X

ð�;�;�Þ
���r��

�� ¼ 0: (2.16)

If in addition to ~r��
�� ¼ 0, one imposes r��

�� ¼ 0, the

torsion vanishes, T�
�� ¼ 0, and there is only one covariant

derivative r ¼ ~r. In this paper, we do not require that
r��

�� ¼ 0.

Using the graded product rule, one arrives at the follow-
ing general expression of the Poisson bracket between
differential forms [14,26]

f	;
g ¼ ���r�	 ^ r�
þ ð�1Þj	j ~R�� ^ ði�	Þ ^ ði�
Þ;
(2.17)

where j	j is the degree of the differential form 	, and

~R�� ¼ 1

2
~R
��
��dx� ^ dx�; ~R

��
�� ¼ ��� ~R�

���: (2.18)

In order that (2.17) satisfies the graded Jacobi identity

f	; f
;�gg þ ð�1Þj	jðj
jþj�jÞf
; f�;	gg
þ ð�1Þj�jðj	jþj
jÞf�; f	;
gg ¼ 0; (2.19)

the connection �
�
�� must obey the following additional

conditions [14]

R�
��� ¼ 0; (2.20)

r�
~R
��
�� ¼ 0: (2.21)

A covariant star product between arbitrary differential
forms has been defined recently in [14] having the general
form

	 ? 
 ¼ 	 ^ 
þ X1
n¼1

�
i@

2

�
n
Cnð	;
Þ; (2.22)

where Cnð	;
Þ are bilinear differential operators satisfy-
ing the generalized Moyal symmetry [26]

Cnð	;
Þ ¼ ð�1Þj	jj
jþnCnð
;	Þ: (2.23)

The operator C1 coincides with the Poisson bracket, i.e.

C1ð	;
Þ ¼ f	;
g. An expression for C2ð	;
Þ has been
obtained also in [14] so that the star product (2.22) satisfies
the property of associativity

ð	 ? 
Þ ? � ¼ 	 ? ð
 ? �Þ: (2.24)

In this paper we consider the case when the symplectic
manifold M has only torsion, i.e. in addition to the neces-
sary constraints (2.14), (2.20), and (2.21) we require

~R�
��� ¼ 0: (2.25)

Since the curvature R�
��� vanishes (2.20), one obtains the

following relation between the curvature ~R and the torsion
T [14]

~R�
��� ¼ r�T

�
��: (2.26)

This relation shows that the condition (2.25) requires that
the torsion T�

�� is covariant constant, i.e.

r�T
�
�� ¼ 0: (2.27)

Therefore, if the torsion is covariant constant, the symplec-
tic manifold M has only torsion but not curvature.
For such a symplectic manifold, the bilinear differential

operators C1ð	;
Þ and C2ð	;
Þ in the star product (2.22)
proposed in [14] reduce to the simpler forms

C1ð	;
Þ ¼ f	;
g ¼ ���r�	 ^ r�
; (2.28)

C2ð	;
Þ ¼ 1

2
������r�r�	^r�r�


þ 1

3

�
���r��

�� þ 1

2
������T

�
��

�

� ðr�r�	^r�
�r�	^r�r�
Þ: (2.29)

We can verify that the covariant star product with torsion
defined in (2.28) and (2.29) is associative [see the
Appendix]. In the next section we apply this covariant
star product in order to develop a noncommutative internal
gauge theory.

III. NONCOMMUTATIVE GAUGE THEORY

Let us consider the internal symmetry group G and
develop a noncommutative gauge theory on the symplectic
manifoldM endowed with the covariant star product (with
torsion) defined above. We proceed as in [15], but consid-
ering the star product defined in (2.28) and (2.29). This
product differs from that used in [15]:
(i) The curvature ~R�

��� is supposed here to vanish as

well as R�
���;

(ii) The ordinary derivative @��
�� (see (2.17) in [15]) is

replaced with the covariant derivative r��
��;

(iii) In (2.29) it appears an additional term 1
2�

�����T
�
��

compared with previous version (see [14] for details,
and also [25,26] for other aspects).

The results given in [15] apply with the corresponding
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changes mentioned above. Before presenting them we
make some observations on other possible applications of
the covariant star product:

(1) It will be interesting to see if the Seiberg-Witten
map can be generalized to the case when the ordi-
nary derivatives are replaced with the covariant
derivatives and the Moyal star product is replaced
by the covariant one.

(2) We can consider that the symplectic manifold M is
associated to a gauge theory of gravitation with
Poincaré group P as local symmetry (see [27–29]
for notations and definitions) and using the covariant
star product as in [15]. In this case we introduce the
Poincaré gauge fields ea� (tetrads) and !ab

� (spin

connection) and then we define the covariant deriva-
tive as

r� ¼ @� � 1

2
!ab

� �ab: (3.1)

It can be shown that by imposing the tetrad postulate
[27]

r�e
a
� � �

�
��ea� ¼ 0 (3.2)

one introduces the connection ��
�� in the Poincaré

gauge theory and the strength tensors Fab
��, F

a
��

determine the curvature and torsion of M

R��
�� ¼ Fab

�� �ea
� �eb

�; T�
�� ¼ Fa

�� �ea
�; (3.3)

where �ea
� denote the inverse of ea�, i.e.

�e a
�ea� ¼ ��

�; �ea
�eb� ¼ �b

a: (3.4)

Now, let us suppose that we develop an internal
gauge theory with the symmetry group G on the
symplectic manifold M. It is very important to re-
mark that making the minimal prescription @� !
r� the strength tensor F�� of the internal gauge

fields A� ¼ Aa
�Ta must be written as

F�� ¼ r�A� �r�A� � i½A�; A�� þ A�T
�
��;

(3.5)

in order to assure its covariance both under Poincaré
group P and internal group G. The gauge invariance
under the gauge transformations ofG becomes quite
clear if we observe that the expression (3.5) is
identical with the usual one. Indeed, using the defi-
nitions of the covariant derivative r� and torsion

T�
��, we obtain

F�� ¼ @�A� � A��
�
�� � @�A� þ A��

�
��

� i½A�; A�� þ A�ð��
�� � ��

��Þ
¼ @�A� � @�A� � i½A�; A��: (3.6)

Also, because the components of the gauge parame-
ter � ¼ �aTa are considered as functions, we can

write the gauge transformations as

�A� ¼ r��� i½A�; ��; r�� ¼ @��: (3.7)

In what follows, we will use these expressions (3.5)
and (3.7) in order to show their invariances
explicitly.

Suppose now that we have an internal gauge group G
whose infinitesimal generators Ta satisfy the algebra

½Ta; Tb� ¼ ifcabTc; a; b; c ¼ 1; 2; . . . ; m; (3.8)

with the structure constants fcab ¼ �fcba and that the Lie-

algebra-valued infinitesimal parameter is

�̂ ¼ �̂aTa: (3.9)

We use the hat symbol ‘‘̂’’ to denote the noncommutative

quantities of our gauge theory. The parameter �̂ is a zero-

form, i.e. �̂a are functions of the coordinates x� on the
symplectic manifold M.
Now, we define the gauge transformation of the non-

commutative Lie-valued gauge potential

Â ¼ Âa
�ðxÞTadx

� ¼ Â�dx
�; Â� ¼ Âa

�ðxÞTa;

(3.10)

by

�̂ Â ¼ d�̂� i½Â; �̂�?: (3.11)

Here we consider the following formula for the commuta-
tor ½	;
�? of two arbitrary differential forms 	 and 


½	;
�? ¼ 	 ? 
� ð�1Þj	jj
j
 ? 	: (3.12)

Then, using the definition (2.22) of the star product, we can
write (3.11) as

�̂Âa ¼ d�̂a þ fabcÂ
b�̂c þ @

2
dabcC1ðÂb; �̂cÞ

� @
2

4
fabcC2ðÂb; �̂cÞ þOð@3Þ; (3.13)

where we noted fTa; Tbg ¼ dcabTc. In fact, this notation is

valid if the Lie algebra closes also for the anticommutator,
as it happens, for example, in the case of unitary groups. In

general, the commutators like ½Â; �̂�? take values in the

enveloping algebra [30]. Therefore, the gauge field Â and

the parameter �̂ take values in this algebra. Let us write for

instance Â ¼ ÂITI and �̂ ¼ �̂ITI, then

½Â; �̂�? ¼ 1

2
fÂI; �̂Jg?½TI; TJ� þ 1

2
½ÂI; �̂J�?fTI; TJg:

Thus, all products of the generators TI will be necessary in
order to close the enveloping algebra. Its structure can be
obtained by successively computing the commutators and
anticommutators starting from the generators of Lie alge-
bra, until it closes [30],

½TI; TJ� ¼ ifKIJTK; fTI; TJg ¼ dKIJTK:
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Therefore, in our above notations and in what follows we
understand this structure in general.

The operators Cn of the star product are defined simi-

larly for noncommutative differential forms like Âa as for

commutative ones. In particular C1ðÂb; �̂cÞ and C2ðÂb; �̂cÞ
are given by (2.28) and (2.29). Here the covariant derivative
concerns the space-time manifold M, not the gauge group
G, so we use the definition

r�Â
a ¼ ð@�Âa

� � ��
��Â

a
�Þdx� � ðr�Â

a
�Þdx�: (3.14)

We define also the curvature 2-form F̂ of the gauge
potentials by

F̂ ¼ 1

2
dx� ^ dx�F̂�� ¼ dÂ� i

2
½Â; Â�: (3.15)

Then, using the definition (2.22) of the star product and the
property (2.23) of the operators Cnð	a; 
bÞ, we obtain
from (3.15)

F̂a ¼ dÂa þ 1

2
fabcÂ

b ^ Âc þ 1

2

@

2
dabcC1ðÂb; ÂcÞ

� 1

2

@
2

4
fabcC2ðÂb; ÂcÞ þOð@3Þ: (3.16)

More explicitly, in terms of components we have

F̂ a
�� ¼ r�Â

a
� �r�Â

a
� þ fabcÂ

b
�Â

c
� þ Âa

�T
�
��

þ @

2
dabcC1ðÂb

�; Â
c
�Þ � @

2

4
fabcC2ðÂb

�; Â
c
�Þ þOð@3Þ;

(3.17)

where we used the definition CnðÂb; ÂcÞ ¼
CnðÂb

�; Â
c
�Þdx� ^ dx� with

C1ðÂb
�; Â

c
�Þ ¼ fÂb

�; Â
c
�g ¼ ���r�Â

b
�r�Â

c
�; (3.18)

C2ðÂb
�; Â

c
�Þ ¼ 1

2
������r�r�Â

b
�r�r�Â

c
�

þ 1

3

�
���r��

�� þ 1

2
������T�

��

�

� ðr�r�Â
b
�r�Â

c
� �r�Â

b
�r�r�Â

c
�Þ:
(3.19)

Under the gauge transformation (3.11) the curvature 2-

form F̂ transforms as

�̂ F̂ ¼ i½�̂; F̂�?; (3.20)

where we used the Leibniz rule

dð	̂ ? 
̂Þ ¼ d	̂ ? 
̂þ ð�1Þj	j	̂ ? d
̂ (3.21)

which we admit to be valid to all orders in @. The Leibniz
rule was verified only in the first order. To second order the
proof is very cumbersome. We believe, however, motivated
by the associativity of the proposed star product, that the
Leibniz rule is valid to all orders. This issue remains a

challenge to be proven. In terms of the components (3.20)
gives

�̂F̂a ¼ fabcF̂
b�̂c þ @

2
dabcC1ðF̂b; �̂cÞ � @

2

4
fabcC2ðF̂b; �̂cÞ

þOð@3Þ: (3.22)

In the zeroth order, the formula (3.22) reproduces therefore
the result of the commutative gauge theory

�Fa
�� ¼ fabcF

b
���

c , �F ¼ i½�; F�: (3.23)

Using again the Leibniz rule, we obtain the deformed
Bianchi identity

dF̂� i½Â; F̂�? ¼ 0: (3.24)

If we apply the definition (3.12) of the star commutator, we
obtain

dF̂þ i½F̂; Â� ¼
�
@

2
dabcC1ðF̂b; ÂcÞ � @

2

4
fabcC2ðF̂b; ÂcÞ

�
Ta

þOð@3Þ; (3.25)

or in terms of components

dF̂a � fabcF̂
b ^ Âc ¼ @

2
dabcC1ðF̂b; ÂcÞ � @

2

4
fabcC2ðF̂b; ÂcÞ

þOð@3Þ: (3.26)

We remark that in zeroth order we obtain from (3.25) the
usual Bianchi identity

dFþ i½F; A� ¼ 0: (3.27)

In addition, if the gauge group isUð1Þ, the Bianchi identity
(3.24) becomes

dF̂ ¼ @C1ðÂ; F̂Þ þOð@3Þ: (3.28)

This result is also in accord with that of [24].
Having established the previous results, we can con-

struct a noncommutative Yang-Mills (NCYM) action. We
will consider the case when the gauge group is UðNÞ. Let
G�� be a metric on the noncommutative space-time M
[15]. We suppose that the metricG�� belongs to the adjoint
representation of Uð1Þ � UðNÞ in the sense that G�� ¼
G��I, where I is the unity matrix of UðNÞ in this repre-
sentation. Therefore, we consider the components of G��

as Lie-algebra-valued zero-forms. The covariant derivative
of the metric G�� is

r�G
�� ¼ @�G

�� þG���
�
�� þ ��

��G
��: (3.29)

If G�� is not constant, we have to modify it to be a

covariant metric Ĝ�� for the (NCYM) action [31], so that it

transforms like F̂ [see (3.20)]

�̂Ĝ�� ¼ i½�̂; Ĝ���?: (3.30)

Then, using the definition (3.12) for the star commutator,
we obtain from (3.30)
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�̂Ĝ�� ¼ ���r�Ĝ
��@��̂þOð@3Þ: (3.31)

We can use the Seiberg-Witten map with the covariant star
product for a field, which is in the adjoint representation (as
we consider G�� to be), in order to obtain [32]

Ĝ �� ¼ G�� � A0
��

��r�G
�� þOð@3Þ; (3.32)

where A0
� is the gauge field in the Uð1Þ sector of UðNÞ.

In order to construct the NCYM action for the gauge
fields Aa

�ðxÞ, � ¼ 1, 2, 3, 0, a ¼ 0; 1; 2; . . . ; N2 � 1, we

use the definition for the integration hfi of a function f (or
of any other quantity) over the noncommutative spaceM as
(see [31] for details)

h�i ¼
Z

dx4jPfðBÞjð�Þ; (3.33)

where B ¼ ��1 and PfðBÞ denotes the Pfaffian of B, i.e.

jPfðBÞj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðBÞp

. The notation has a connection with the
very important result that for a D-brane in a B field
background (with B constant or nonconstant), its low-
energy effective theory lives on a noncommutative space-
time with the Poisson structure [31,33,34]. More exactly, it
has been shown that the metric G introduced on the
Poisson manifold M is related to the metric g appearing
in the fundamental string (open or closed) action by G ¼
�B�1gB�1 [9,31,33].

Now, we define the NCYM action by (see [15,31])

Ŝ NCYM ¼ � 1

2g2c
htrðĜ ? F̂ ? Ĝ ? F̂Þi

¼ � 1

4g2c
htrðĜ�� ? F̂�� ? Ĝ�� ? F̂��Þi; (3.34)

where gc is the Yang-Mills gauge coupling constant, and
we have used the normalization property

tr ðTaTbÞ ¼ 1

2
�abI: (3.35)

Using the properties of gauge covariance (3.20) and

(3.30) for F̂ and Ĝ, respectively, we obtain

�̂ŜNCYM ¼ � @

4g2c
hC1ðtrðĜ F̂ Ĝ F̂Þ; �̂Þi þOð@3Þ: (3.36)

Since the integral (3.33) is cyclic in the Poisson limit [31],
the integral of the Poisson bracket vanishes, i.e.
hC1ðf; hÞi ¼ 0 for any integrable functions f and h, and
thus (3.36) becomes

�̂ŜNCYM ¼ 0þOð@3Þ: (3.37)

Therefore, the action ŜNCYM is invariant up to the second
order in @. The expression (3.34) of the action can be
further simplified as [15,31]

Ŝ NCYM ¼ � 1

2g2c
htrðĜ F̂ Ĝ F̂Þi þOð@3Þ

¼ � 1

4g2c
htrðĜ��F̂��Ĝ

��F̂��Þi þOð@3Þ: (3.38)

Using the previous results we can obtain solutions for
the noncommutative gauge field equations. An example is
given in Sec. IV, using the symplectic manifold M en-
dowed with a covariantly constant torsion.
We can add fields into our noncommutative gauge model

in the usual way. As an example, we mention the case when
the noncommutative UðNÞ gauge theory is coupled to a

Higgs multiplet �̂ðxÞ ¼ �̂aTa in the adjoint representa-

tion. The action integral for �̂ðxÞ is [35]

Ŝ HIGGS ¼ � 1

4g2
htrðD̂��̂ ? Ĝ�� ? D̂��̂Þi; (3.39)

where

D̂ ��̂ ¼ @��̂� ig½�̂; Â��? (3.40)

is the noncommutative gauge covariant derivative. Because
this derivative is gauge covariant, in the sense

�̂ðD̂��̂Þ ¼ i½�̂; D̂��̂�?; (3.41)

the action ŜHIGGS is invariant as well as ŜNCYM up to the
second order in @. The action of the noncommutative UðNÞ
coupled to the Higgs multiplet �̂ðxÞ reads

ŜNC ¼ � 1

4g2
htrðĜ�� ? F̂�� ? Ĝ�� ? F̂��

þ D̂��̂ ? Ĝ�� ? D̂��̂Þi: (3.42)

This action can be used for obtaining solutions of the
noncommutative version of the Yang-Mills–Higgs model
by using the covariant star product on the symplectic
manifold M, as an extension of the results of [35], where
the usual Moyal star product is used.

IV. AN ILLUSTRATIVE EXAMPLE

As a very simple example we consider the Poincaré
gauge theory to construct the manifold M. Then, suppose
that we have the gauge fields ea� and fix the gauge !ab

� ¼
0 [36]. We define the connection coefficients

��
�� ¼ �ea

�@�e
a
�; (4.1)

where �ea
� denotes the inverse of ea�. Obviously, the

connection � defined by these coefficients is not symmet-
ric, i.e. �

�
�� � �

�
��. Define then the torsion by formula

T�
�� ¼ ��

�� � ��
��: (4.2)

In order to simplify the calculation, we consider the case
of spherical symmetry and choose the gauge fields ea� as
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ea� ¼ diag

�
A; 1; 1;

1

A

�
; �ea

� ¼ diag

�
1

A
; 1; 1; A

�
;

(4.3)

where A ¼ AðrÞ is a function depending only on the radial
coordinate r. Then, denoting the spherical coordinates on
M by ðx�Þ ¼ ðr; #; ’; tÞ, � ¼ 1, 2, 3, 0, the non-null
components of the connection coefficients are

�0
10 ¼ �A0

A
; �1

11 ¼
A0

A
: (4.4)

It is easy to see that the only non-null components of the
torsion are

T0
01 ¼ �T0

10 ¼
A0

A
: (4.5)

Also, using the definitions (2.7) and (2.8) of the curvatures,
we obtain

~R 0
101 ¼ � ~R0

110 ¼
AA00 � 2A02

A2
; R�

��� ¼ 0 (4.6)

and all other components of ~R�
��� vanish. In these expres-

sions, we denote the first and second derivatives of AðrÞ by
A0 and A00, respectively. The vanishing curvature R�

���

agrees with the constraint (2.20).
Introduce then the noncommutativity parameters ���

and suppose that we choose them to be

ð���Þ ¼
0 0 0 1

AðrÞ
0 0 b 0
0 �b 0 0

� 1
AðrÞ 0 0 0

0
BBB@

1
CCCA; (4.7)

where b is a nonvanishing constant. Then we have

~r 1�
01 ¼ �~r1�

10 ¼ 0; r1�
01 ¼ �r1�

10 ¼ A0

A2
:

(4.8)

This agrees with the constraint (2.14) that ��� is covariant

constant under ~r.
Finally, if we impose also the condition that the curva-

ture ~R��
�� ¼ ��� ~R�

��� vanishes [equivalent with (2.25) due

to (2.4)], that impliesr�
~R��
�� vanishes too (2.21), then from

(4.6) we obtain the following differential equation of the
second order for the unknown function AðrÞ:

AA00 � 2A02 ¼ 0: (4.9)

The solutions of this equation is

AðrÞ ¼ � 1

c1rþ c2
; (4.10)

where c1 and c2 are two arbitrary constants of integration.
Therefore, in our simple example, the conditions necessary
to define a covariant star product on a symplectic manifold
M completely determine its connection. In addition, it is

very interesting to see that the covariant derivative of the
torsion, defined as

r�T
�
�� ¼ @�T

�
�� þ ��

��T
�
�� � ��

��T
�
�� � ��

��T
�
��;

(4.11)

has the following non-null components:

r1T
0
01 ¼ �r1T

0
10 ¼

AA00 � 2A02

A2
: (4.12)

Then, taking into account Eq. (4.9), we conclude that the
torsion is covariant constant, r�T

�
�� ¼ 0, a result which is

in concordance with the condition (2.27).
Now we construct a noncommutative Uð2Þ gauge theory

on the space-time manifold M presented in the previous
example. Denote the generators of the Uð2Þ group by Ta,
a ¼ k, 0, with k ¼ 1, 2, 3; here Tk ¼ �k (Pauli matrices)
generates the Uð2Þ sector and T0 ¼ I (the unit matrix)—
the Uð1Þ sector of the gauge group. These generators
satisfy the algebra (3.8), where only the structure constant
fijk ¼ 2ijk (ijk are the totally antisymmetric Levi-Civita

symbols) of the SUð2Þ sector are nonvanishing, the other
components of fabc being equal to zero. The anticommuta-

tor fTa; Tbg ¼ dcabTc also belongs to the algebra of Uð2Þ,
where d0bc ¼ 2�bc, dab0 ¼ 2 are the only nonvanishing

components.
We choose the 1-form gauge potential of the form

[37,38]

A ¼ uT3dtþ wðT2d# � sin#T1d’Þ þ cos#T3d’

þ vT0dt; (4.13)

where u, w, v are functions depending only on the radial
coordinate r. We consider the metric G�� and its inverse

G�� of the form

G�� ¼ diag

�
1

N
; r2; r2sin2#;�N

�
(4.14)

and

G�� ¼ diag

�
N;

1

r2
;

1

r2sin2#
;� 1

N

�
; (4.15)

respectively, where N is also a function depending only on
r. For example, the following set of functions,

u ¼ u0 þQ

r
; w ¼ 0; v ¼ 0;

N ¼ 1� 2M

r
þQ2 þ 1

r2
;

(4.16)

describes a colored black hole in the SUð2Þ sector [38]. The
metric G�� is of Reissner-Nordström type with electric

charge Q and unit magnetic charge [38]. It is the simplest
solution of the Einstein–Yang-Mills field equations with a
nontrivial gauge field.
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We can obtain the noncommutative Yang-Mills field
equations and their solutions by imposing the variational

principle �̂ŜNCYM ¼ 0. However, it is simpler and equiva-
lent to use the Seiberg-Witten map and determine the

noncommutative gauge fields Â�, the field strength F̂��

and the metric Ĝ�� order by order in the deformation
parameter.

To this end, we denote the noncommutative quantities of

our model by �̂ ¼ �̂aTa (the gauge parameter), Â ¼
Â�dx

� ¼ Âa
�Tadx

� (the 1-form gauge potential) and

Ĝ�� ¼ Ĝ��I (the metric), and expand them as formal
power series in �

�̂ ¼ �þ �ð1Þ þ �ð2Þ þ � � � ;
Â� ¼ A� þ Að1Þ

� þ Að2Þ
� þ � � � ;

Ĝ�� ¼ G�� þG��ð1Þ þG��ð2Þ þ � � � ;
(4.17)

where the zeroth order terms �, A�, and G�� are the

ordinary counterparts of �̂, Â�, and Ĝ��, respectively.

Using the Seiberg-Witten map for the noncommutative
gauge theory with the covariant star product [32] we obtain
the following expressions for the first order deformations:

�ð1Þ ¼ 1

4
���f@��; A�g; (4.18)

Að1Þ
� ¼ � 1

4
���fA�;r�A� þ F��g; (4.19)

G��ð1Þ ¼ ����A0
�r�G

��: (4.20)

Note that due to the particular form of the parameter ���

(4.7) and the solution (4.10), there are in fact three non-
commutativity parameters in our model: c1, c2, and b.
From now on we denote them by c1 ¼ �1 (of dimension
T), c2 ¼ �2 (of dimension LT), and b ¼ �3
(dimensionless).
The first order deformations of the field strength can be

obtained from the definition (3.15) by using (4.19):

Fð1Þ
�� ¼ � 1

4
���ðfA�;r�F�� þD�F��g � fF��; F��gÞ;

(4.21)

where

r�F�� ¼ @�F�� � ��
��F�� � ��

��F�� (4.22)

is the covariant derivative (it concerns the space-time
manifold M) and

D�F�� ¼ r�F�� � i½A�; F��� (4.23)

is the gauge covariant derivative (it concerns the gauge
group).
In particular, for the colored black hole solution (4.16)

we obtain

Aað1Þ
0 ¼

�
0; 0;

1

2
sinð2#Þ�3;� 1

2

�
u0 þQ

r

�

�
��

u0 þ 3Q

r

�
�1 þ 2Q

r2
�2

��
; (4.24)

G��ð1Þ ¼ 0; (4.25)

F0ð1Þ
�� ¼

0 0 0 BðrÞðr�1 þ �2Þ
0 0 cosð2#Þ�3 0
0 � cosð2#Þ�3 0 0

�BðrÞðr�1 þ �2Þ 0 0 0

0
BBB@

1
CCCA; (4.26)

where a ¼ 1, 2, 3, 0 and

BðrÞ ¼ Q

r3

�
2u0 þ 3Q

r

�
; (4.27)

and other components of Fað1Þ
�� are equal to zero. When the

Uð1Þ sector is not empty vðrÞ � 0, we obtain a nonvanish-
ing first order deformation of the metricG��ð1Þ � 0, but for
simplicity we prefer to consider only the colored black hole
solution here.

All these first order deformations vanish if the noncom-
mutativity parameters vanish �1, �2, �3 ! 0. However, this
limit cannot be achieved because the symplectic structure
of the space-time M imposes the condition detð���Þ � 0.

Finally, we mention that colored black holes and their
generalizations with angular momentum and cosmological
term, as well as solutions with cylindrical and plane sym-

metries have also been obtained [38]. It would be of
interest to extend these results to the noncommutative
theory.

V. CONCLUSIONS AND DISCUSSIONS

We developed a noncommutative gauge theory by using
a covariant star product between differential forms on
symplectic manifolds defined as in [14]. We followed the
same way as in our recent paper [15], extending the results
of [14] to the case of Lie-valued differential forms.
To simplify the calculations, we considered a space-time

endowed only with torsion. It has been shown that, in order
to satisfy the restrictions imposed by the associativity
property of the covariant star product, the torsion of the
space-time has to be covariant constant, r�T

�
�� ¼ 0. On

the other hand, it has been argued that a covariant star
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product defined in the case when the space-time is a
symplectic manifold endowed only with curvature is not
possible. This is due to the restrictions imposed by the
associativity property of the covariant star product which
requires also the vanishing curvature. The corresponding
connection is therefore flat symplectic and this reduces the
applicability area of the covariant star product.

An illustrative example has been presented starting from
the Poincaré gauge theory. Using the gauge fields ea� and

fixing the gauge !ab
� ¼ 0 [36] we defined the nonsymmet-

ric connection �
�
�� ¼ �ea

�@�e
a
�. We deduced that, in this

case, the conditions necessary to define a covariant star
product on a symplectic manifoldM completely determine
its connection.

Some other possible applications of this covariant star
product have been also analyzed. First, it will be very
important to generalize the Seiberg-Witten map to the
case when the ordinary derivatives are replaced with co-
variant derivatives and the Moyal star product is replaced
by the covariant one. Second, we can try to develop a
noncommutative gauge theory of gravity considering the
symplectic manifold M as the background space-time. For
such a purpose, we have to verify if the noncommutative
field equations do not impose too many restrictive condi-
tions on the connection �

�
��, in addition to those required

by the existence of the covariant product. However, the
problem of which gauge group we can choose remains
unsolved. The Poincaré group cannot be used because it
does not close with respect to the star product. A possibility
will be to choose the group GLð2;CÞ, but in this case we
obtain a complex theory of gravitation [39,40]. Another
possibility is to consider the universal enveloping of the
Poincaré group, but this is infinite dimensional and we
must find criteria to reduce the number of the degrees of
freedom to a finite one. Some possible ideas are given for
the case of SUðNÞ or GUT theories in [41], where it is
argued that the infinite number of parameters can in fact all
be expressed in terms of right number of classical parame-
ters and fields via the Seiberg-Witten maps.

Two ways to generalize the Poisson bracket and the
covariant star product to the algebra of tensor fields on a
symplectic manifold have been proposed recently [42,43].
In the latter work one studied covariant star products on
spaces of tensor fields defined over a Fedosov manifold
with a given symplectic structure and a given flat torsion-
less symplectic connection. In the former approach one
considers such generalizations on symplectic manifolds
and Poisson manifolds that impose as few constraints as
possible on the connections. Both of these approaches are
in part motivated by their possible application to noncom-
mutative gravity.
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APPENDIX

We verify the associativity property up to the second
order in @. For simplicity we denote the exterior product by
	 ^ 
 ¼ 	
.
Introducing (2.22) into (2.24) we obtain successively�
	
þ i@

2
C1ð	;
Þ þ

�
i@

2

�
2
C2ð	;
Þ þ � � �

�
? �

¼ 	 ?

�

�þ i@

2
C1ð
; �Þ þ

�
i@

2

�
2
C2ð
;�Þ þ � � �

�

(A1)

or

ð	
Þ�þ i@

2
½C1ð	
;�Þ þ C1ð	;
Þ�� þ

�
i@

2

�
2½C2ð	
;�Þ

þ C1ðC1ð	;
Þ; �Þ þ C2ð	;
Þ�� þ � � �
¼ 	ð
�Þ þ i@

2
½C1ð	;
�Þ þ 	C1ð
;�Þ�

þ
�
i@

2

�
2½C2ð	;
�Þ þ C1ð	;C1ð
;�ÞÞ

þ 	C2ð
;�Þ� þ � � � :
Identifying the terms of different orders in @ we obtain

ð	
Þ� ¼ 	ð
�Þ; (A2)

C1ð	
;�Þ þ C1ð	;
Þ� ¼ C1ð	;
�Þ þ 	C1ð
;�Þ;
(A3)

C2ð	
;�Þ þ C1ðC1ð	;
Þ; �Þ þ C2ð	;
Þ�
¼ C2ð	;
�Þ þ C1ð	;C1ð
;�ÞÞ þ 	C2ð
;�Þ: (A4)

(A2) is verified because the exterior product has this
property.
Using (2.28), the (A3) becomes

���½r�ð	
Þðr��Þ þ ðr�	Þðr�
Þ�� ðr�	Þr�ð
�Þ
� 	ðr�
Þðr��Þ� ¼ 0

that is satisfied due to the Leibniz rule r�ð	
Þ ¼
ðr�	Þ
þ 	ðr�
Þ.
In order to verify (A4) we write it as

�C2ð	;
; �Þ � C2ð	;
�Þ � C2ð	;
Þ�� C2ð	
;�Þ
þ 	C2ð
;�Þ

¼ ff	;
g; �g � f	; f
;�gg: (A5)

We calculate the right-hand side of (A5) first
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ff	;
g; �g � f	; f
; �gg ¼ ð�1Þj	jðj
jþj�jÞf
; f�;	gg ¼ ð�1Þj	jðj
jþj�jÞ���ðr�
Þr�ð���ðr��Þðr�	ÞÞ
¼ ����ðr��

��Þðr�	Þðr�
Þðr��Þ þ ������½ðr�r�	Þðr�
Þðr��Þ � ðr�	Þðr�
Þ
� ðr�r��Þ�; (A6)

where the graded symmetry property (2.23) (for n ¼ 1) and the graded Jacobi identity (2.19) of the Poisson bracket are
used in the first equality, the expression (2.28) for the Poisson bracket in the second step, and the symmetry properties of
��� and the exterior product, 	
 ¼ ð�1Þj	jj
j
	, in the last equality. Then we introduce the decomposition of the second
covariant derivative of an arbitrary differential form as

r�r�	 ¼ 1

2
fr�;r�g	� 1

2
T�
��r�; (A7)

implied by (2.10) and (2.20), into (A6). Finally, using the cyclic property (2.15) for the torsion, we obtain

ff	;
g; �g � f	; f
;�gg ¼ �
�
���r��

�� þ 1

2
������T

�
��

�
ðr�	Þðr�
Þðr��Þ

þ 1

2
������½fr�;r�g	ðr�
Þðr��Þ � ðr�	Þðr�
Þfr�;r�g��: (A8)

Next, we calculate the left-hand side of (A5), the Hochschild coboundary of C2 (see [14] for details). First we calculate
C2ð	;
�Þ � C2ð	;
Þ� and C2ð	
;�Þ � 	C2ð
; �Þ, then substracting them yields

�C2ð	;
; �Þ ¼ 1

2
������½ðr�r�	Þ2ðrð�
r�Þ�Þ � 2ðrð�	r�Þ
Þðr�r��Þ� þ 1

3

�
���r��

�� þ 1

2
������T

�
��

�

�ððr�	Þ2ðrð�
r�Þ�Þ � 2ðrð�	r�Þ
Þðr��ÞÞ; (A9)

where we denote rð�	r�Þ
 ¼ 1
2 ½ðr�	Þðr�
Þ þ ðr�	Þðr�
Þ�. By using the symmetries of the factor ������ and the

cyclic relation implied by (2.16) and (2.15),

X
ð�;�;�Þ

�
���r��

�� þ 1

2
������T

�
��

�
¼ 0; (A10)

we find

�C2ð	;
; �Þ ¼ 1

2
������½fr�;r�g	ðr�
Þðr��Þ � ðr�	Þðr�
Þfr�;r�g��

�
�
���r��

�� þ 1

2
������T�

��

�
ðr�	Þðr�
Þðr��Þ: (A11)

This is the same result as in (A8) and therefore we have verified the associativity of our star product to the second order in
@.
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