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A covariant Poisson bracket and an associated covariant star product in the sense of
deformation quantization are defined on the algebra of tensor-valued differential forms
on a symplectic manifold, as a generalization of similar structures that were recently
defined on the algebra of (scalar-valued) differential forms. A covariant star product of
arbitrary smooth tensor fields is obtained as a special case. Finally, we study covariant
star products on a more general Poisson manifold with a linear connection, first for
smooth functions and then for smooth tensor fields of any type. Some observations on
possible applications of the covariant star products to gravity and gauge theory are made.
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1. Introduction

Due to several convincing arguments arising from the quantum theory and the Ein-
stein’s theory of gravity, it is generally believed that the manifold structure of space—
time does not exist at distances equal and shorter than the Planck length and that
the correct description of space—time should be somehow noncommutative. Field
theories defined on noncommutative space—times have been extensively studied dur-
ing the last decades (for reviews see Refs. 1 and 2). The canonically noncommutative
space—time structure, generated by the coordinate commutation relations

[Z#,2"] = 6" (1.1)
with a constant antisymmetric *¥, and its Moyal star product have received most
attention. Also the Lie algebraic structure, the quantum space structures and the
symplectic and Poisson manifolds have been considered as possible descriptions of

noncommutative space—-time. We consider the last two cases where the 0#¥ (%) is a
generally Z-dependent bivector field.
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The main effects of the noncommutativity of space—time on the theories of
particle physics, most notably the Standard Model, have been extensively studied
and by now some of their features are well understood. Understanding gravity on
noncommutative space—times has proven to be a challenging effort. This is due
to the difficulty to accommodate both the gravitational and the noncommutative
structures of space—time — the classical geometrical large-distance structure and
the noncommutativity of coordinates at short distances.

One of the standing issues of noncommutative gravity is the general covariance of
the star product under space—time diffeomorphisms. The diffeomorphism-covariance
of a star product can be achieved in many ways. One way is to construct a star pro-
duct that is by definition covariant under conventional space-time diffeomorphisms.
This is the approach we shall consider in this work. More specifically we consider
space—time as a symplectic manifold — later as a more general Poisson manifold —
and seek to quantize such a space-time by introducing a (noncommutative) co-
variant star product. This is done in the light of two recent approaches®® to the
quantization of a symplectic space—time manifold. We construct a diffeomorphism-
covariant Poisson bracket and an associated star product of tensor-valued differen-
tial forms on such space—time. A covariant star product of tensor fields is obtained
as the special case of tensor-valued zero-forms. Possible applications of the obtained
covariant star product to gravity and gauge theory are discussed.

Deformation quantization of more general Poisson manifolds with a torsion-free
linear connection has also been studied recently® and a universal covariant star
product of functions has been constructed. We define a covariant Poisson bracket
on a smooth manifold with a linear connection and propose an associated covariant
star product of tensor fields on the Poisson manifold. The constraints that the
connection is imposed to satisfy by these structures are studied. The possibility to
relax the torsion-freeness condition of Ref. 6 in the case of a star product of functions
is also considered. For a recent review of deformation quantization see Ref. 7.

2. On Covariant Derivative of Tensors and Differential Forms

The intent of this section is to review the concepts of connection and covariant
derivative on smooth manifolds, providing some of the definitions and results that
are used in the following sections, and to discuss some misunderstandings found in
recent literature regarding these things.

2.1. Connections and covariant derivatives

We consider a smooth manifold M and a linear connection on the tensor bundle
T(M) of M and the associated covariant derivative.* The linear connection is given

2We could equally well talk about an affine connection instead of a linear connection. See Ref. 8,
Chap. 3, Theorem 3.3, for their relation.
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by a covariant derivative V that is a linear map
VTR (M) — TR, (2.1)

where T*!(M) is the vector space of smooth tensor fields of type (k,1) on M, i.e.
the space of smooth sections of the tensor product bundle ®* TM ®! T*M

TH(M) =T(e" TM &' T*M), (2.2)

where T'M and T*M are the tangent bundle of M and the cotangent bundle of M,
respectively, ®* T M denotes the kth tensor power of TM and I' denotes the space
of all smooth sections of the argument fiber bundle. We shall denote the algebra of
tensor fields on M by

o0

T(M) = T (M). (2.3)

k,1=0

The covariant derivative Vx along a vector field X € X (M) = T'(TM) is a linear
derivation that preserves the type of tensors

Vx : THY(M) — TR (M) (2.4)
and it is related to the connection (2.1) by
(VXA)(OQ, ey Oék,Xl, ce ,Xl) = (VA)(X, Ay enny Oék,Xl, ce ,Xl) 5 (25)

where the vector field X in the covariant derivative Vx A of A € T*!(M) takes the
place of the additional vector argument in VA € T*!+1 (M) provided by (2.1) (see
Ref. 8, Chap. 3, Sec. 2).P This together with the requirements that Vx commutes
with all contractions and acts on functions as the vector X (directional derivative)

Vxf=X(f), feFM)=T(M xR) (2.6)

ensures that V satisfies the properties of a covariant differentiation on 7 (M).© The
covariant derivative (2.5) can be written

(VxA)(Oz17...7a;€,X1,...,Xl)
= Vx(A(Oéh...,Oék7X1,...7Xl))

k
_ZA(Q17~-~avXaia-~-aak7X17~-~7Xl)
i=1

l
—ZA(Oz17...,Oék7X1,...,VxXi7...7Xl), (2.7)
i=1

PThe additional argument X in the (2.5) is the first one, because we want to have the argu-
ments of VA in the same order as the corresponding tensor indices in the component notation
VpAmm“kl,l.,.l,l.

“The linearity of a tensor VA in its arguments guarantees that Vyx = fVx and Vx iy =
Vx + Vy, for arbitrary f € F(M) and X, Y € X(M).
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which follows from Vx being a derivation that commutes with all contractions
(see Ref. 8, Chap. 3, Proposition 2.10). Thus the second covariant derivative of
AeTr (M) is

(VZA)(X;Y;) = Vx(VyA) = Vy,vA, (2.8)

where each term is in T%!(M) (see Ref. 8, Chap. 3, Proposition 2.12). The nth
covariant derivative can be obtained inductively.

2.1.1. Differential forms

The vector space of differential forms of degree p on M is the space of smooth
sections of the pth exterior power of the cotangent bundle,

QP (M) =T(ANPT*M) . (2.9)
The algebra of differential forms on M — with the exterior product A as multipli-
cation — is the direct sum of the spaces of p-forms of all degrees p and it shall be
denoted by

dim M

QM) = P orr). (2.10)

The covariant derivative of a differential form on M is defined similarly as for any
other tensor field on M (see above). However, the algebra (M) is not closed under
a covariant differentiation V. For example, restricting the domain of V to QP (M)
we have

V:T(NT*M) = T(T*"M @ N\°T*M) , (2.11)

where the range is the space of covector-valued p-forms. Thus we have to consider
tensor-valued differential forms.

The vector space of (k,[)-tensor-valued differential forms of degree p shall be
denoted by

QP (M, T =T(@" TM @' T*M @ APT*M) , (2.12)
where T%! abbreviates the tensor product bundle ®* TM &' T*M.4 Note that
QO(M, T*Y) = TRY(M) and QP (M, T%0) = QP(M). The algebra of all tensor-valued

differential forms is defined as
dim M oo

QM T)= @ P (T, (2.13)

p=0 k=0
with the multiplication given by the generalized exterior product

A QP (M, TR x QUM, T™™) — QPYYM, TF @ T™™) = QPra(pf, TrRHm-tm)
(2.14)

dWe shall also refer to elements of QP (M, T*!) as (k,1)-tensor-valued p-forms.
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The covariant derivative V maps (k, [)-tensor-valued p-forms to (k,l + 1)-tensor-
valued p-forms

V QP (M, THY — QP (M, T (2.15)

We also define an exterior covariant derivative D that is the natural extension of
the exterior derivative d: QP(M) — QPTL(M) and V on Q(M,T). It maps tensorial
p-forms to tensorial (p 4+ 1)-forms of the same type

D :QP(M, T — QP (M, TFY) (2.16)

which we shall discuss more shortly (see also Ref. 8, Chap. 2, Sec. 5).

2.1.2. Local smooth frames, the connection one-form, the torsion and the
curvature two-forms and the exterior covariant derivative

A connection one-form w?, of V is associated to a local smooth frame {e, }3mM of
the tangent bundle T'M over an open set U of M over which T'M is trivial. It is
defined by

Ve, = w ® eq. (2.17)
The connection V on T'M (restricted over U) is given by
V¢ = (d¢" + wh¢") ® eq, (2.18)

where ¢ = ¢%e, € I'(T'M) over U and d is the exterior derivative. On the cotangent
bundle 7% M, the dual bundle of T M, we can setup a local smooth frame {e®}dim M
over U that is dual to the frame of TM, (€%, ;) = 05. Thus the connection on T* M
over U is given by Ve = —w% ® eb and

Vi = (dghy — whyta) @€, (2.19)
where ¢ = 1tpge® € T(T*M). Extension to the tensor bundle T(M) is
straightforward,® e.g. for A = A“l”'a"'bl___blea1 ® Ry e @@ el €
['(®F TM &' T*M) over U we have

k

o ai--ag a; a1:-:@;i—1CA41°" Ak
VA= (dA R E w*, A byoby
i=1

l
_ chbiAalmakbl---bi1cbi+1---b> Req @ ®eq @ 6b1 R ® ebl . (220)
1=1

All the other local smooth frames of T*M and T'M can be obtained through
local linear transformations

et =A%, el =ey(ATH (2.21)

a’

¢V has the standard Leibniz rule, V(A ® B) = VA® B + A ® VB, and similarly for the exterior
product, V(AAB) =VAANB+ AAVB.
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where in the general case A € GL(T,M) = GL(dim M, R), but additional structures
on M can restrict the local symmetry group to a subgroup of GL(dim M, R). The
components of tensor fields transform as

a--a a a Cc1-C _ _1n\d
A, ! kb1---bz =A 1Cl A kaA ' kdl"'dl(A 1)d1b1 (A 1) lbl (222)

and the connection one-form has the transformation rule
W,ab — Aacwcd(A_l)db o dAac(A_l)cb' (2.23)

For tensor-valued differential forms, we use notation where the tensor indices are
visible and the antisymmetric form components are hidden, e.g. A € QP (M, T*!) is
written

Ao, l'Aal"'ak
p:
The torsion two-form T'* and the curvature two-form R, of the connection are
defined by

eETN - NeP. (2.24)

by--bicr-cp

T% = De® = de® +w Ae”, (2.25)
Rab = d(JJab + (JJaC AN (.Ucb s (226)

where D is the exterior covariant derivative (2.16) that is defined for a tensor-valued
differential form (2.24) as the linear map

k
a1--ap . a1--ak @ a1@io1Cai41 Ak
DA byby dA by---by + E w 1c/\A by by
=1
l
c ay--ag
> Wy NA brbs1chisrebr- (2.27)
i=1

Unlike the exterior derivative d A%t ¥ b, » Uhe exterior covariant derivative (2.27)
has the correct tensor transformation rule (2.22) under local frame transformations
(2.21). The second exterior covariant derivative consist of contractions with the
curvature two-form (2.26)

k
2 qa1---ag _ a; a1°°Qj—1CAG41 Ak
D=A biby E R ZC/\A by---by

=1

l
c aj-ag

~> R, NA by by (2.28)

i=1

Taking exterior covariant derivatives of (2.25) and (2.26) yields the Bianchi
identities

DT = R Ae”, (2.29)
DR% =0. (2.30)
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2.1.3. Local coordinates

Introducing a local coordinate system {x”}ii:mlM on the open set U of M enables
us to use the full component notation of tensor calculus — the formalism conven-
tionally used in physics. It enables us to locally write the covariant derivative (2.20)
of a tensor field A € T%!(M) along the basis vector 52 as

k
ai-ag _ ai--ag a; a1 @;—1CA41° Ak
VA byoty = OnA bty T E W, %A br-by
i=1
!
c ai--ap
=3 W AT s (2.31)
=1

where w, %, da# = w%, Ve, = w,“yeq and Ve = —w, % e’ This is the local form

of (2.7).

Since the fibers of T'M and T*M over each p € M are the tangent space T, M
and the cotangent space T); M of M at p respectively, the local frames of T'M and
T*M over each p € M are smoothly related to the coordinate bases 8%‘ and dz* of
T, M and T}; M respectively through (orientation preserving) linear transformations

o M 9 a_ ,a m
Ca=€ 5, € = e, da”, (2.32)
where e * as a matrix is a GLT (dim M, R)-valued smooth function on M and e,
is the inverse of e /; e e’ = 8}, e e, = 61.F The functions e, and e, enable
us to transform components of tensors between the coordinate and noncoordinate
bases.

A (k,1)-tensor-valued p-form (2.24) behaves as a (k, !+ p)-tensor field under the

covariant derivative (2.20)

1

where the expression inside the parenthesis is given by (2.31).

2.1.4. Using a coordinate basis for T'(M)

We can even choose the local frames of TM and T*M to coincide with a coordinate
a%a’ and cotangent spaces, e* = dz®. When this choice
is made, we conventionally choose to work with one kind of indices, a — pu etc.,

basis of tangent spaces, e, =

and rename the connection one-form w® — I'Y and the connection coefficients

w,", — I'7,. The covariant derivative is now defined by

YV, : TR(M) — THHL(M), (2.34)

fGL* (dim M, R) = {g € GL(dim M, R) : det g > 0}.
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k
. o ALl O i1
VPAM ﬂkuy--vz = 8#14#1 #km_..w + ZFgﬂA 1 10Hi+1 le“‘VL
=1

l
_ Z ngi Aulmukyl---yi,10Vi+1-"VL . (235)
i=1

General coordinate transformations, x — 2’ = a/(z), are a specific class of frame
transformations (2.21) with the local transformation matrix
o'+

AV = —— .
v Oxv

(2.36)

2.2. Criticism

It is important to understand that the algebra of differential forms Q(M) is not
closed under the covariant derivation V (equivalently under V, in a coordinate
basis). The covariant derivative Vw of a p-form w is a smooth section of the product
bundle T*M @ APT*M. In other words V,w is a (0, 1)-tensor-valued p-form. This
is not acknowledged in Ref. 4, where the covariant derivative V,w of a p-form w
along the basis vector e, is considered to be a p-form, which leads to some serious
problems.

Differential forms are frame-independent objects that exist independent of any
coordinate system. V,w is clearly a frame-dependent object that transforms as a
component of a covector under general coordinate transformations.

The convention “V,, acts nontrivially only on the bases e, and dz*” in Ref. 4 is
inconsistently executed. The property (2.7) is violated, when some of the contrac-
tions are differentiated with V,,. As an example we consider the covariant derivative
of the contraction of a bivector §*” and two covariant derivatives V,« and V, 3 of
differential forms « and g,

YV (0"7V,aV ,8) = (V,0"°)V,aV,8+ 0" (V,V,aV,8 + V,aV,V,B3). (2.37)

Clearly we cannot write V0" = 0,0, as is done in similar calculations of Ref. 4
(see Ref. 4, Apps. B.5 and C for these calculations), without trivializing the con-
nection. The tensorial nature of R is correctly recognized in these calculations
(see also Ref. 4, App. A), but the bivector 8*¥ is treated as a function.

Moreover, in Ref. 4 the second covariant derivatives V,V, o of a p-form o are
incorrectly calculated, so that the commutator of second covariant derivatives of «,

P
— a log
(Vs Vilap, .p, = =T, Vop,.p, — g R @1 pi10pig1-pp s (2.38)
i=1

contains only the curvature contributions, but not the torsion contribution.® This
is an implication of the failure to fully recognize the additional argument vector
provided by the covariant derivative.

&If one wants to use the above mentioned convention for V,, one should calculate the second
covariant derivative of o as V,(dz” ® (Vo).



Covariant Star Product on Symplectic and Poisson Space—Time Manifolds 3773

Due to these problem in the covariant derivative of Ref. 4, the star product pro-
posed in Ref. 4 is neither truly associative nor covariant. The associativity property
of the star product is found to be satisfied only because the covariant derivatives
in the double Poisson brackets like {{a, 8},~} are calculated incorrectly.

These problems with the covariant derivative found in Ref. 4 have been recently
corrected in Ref. 3, where the formalism of Ref. 4 is reconsidered by using correct
definitions. In Ref. 3 the covariant derivative V, is correctly taken on tensor fields
of any type and one does not try to extend the algebra of differential forms by the
covariant derivatives.

3. Generalization of the Poisson Structure and the Star Product
to the Algebra of Tensor-Valued Differential Forms on a
Symplectic Manifold

3.1. Poisson algebra of differential forms

Consider the graded differential Poisson algebra of differential forms on a symplectic
manifold M studied in Refs. 9, 4, 3, 10.
The Poisson bracket of functions f, g € F(M) is defined by

{f.g} =0(df, dg) =0""0.f0ug. (3.1)
The Jacobi identity of the Poisson bracket requires that the Poisson bivector satisfies
D 040,07 =0, (3.2)

(1,v,p)

where the sum is over cyclic permutations. The Poisson bivector 6 is assumed to
be nondegenerate, so that it has an inverse w that satisfies w,, 0"” = 4. It can
be shown that (3.2) is equivalent to w being a closed form, dw = 0.° The closed
nondegenerate two-form w on M is called the symplectic form.

The Poisson bracket of a function and a differential form o € Q(M) (of degree
one at first and then of any degree)

{f.a} = Vx,a = 0"0,fV,a (3.3)

is a covariant derivation of o and therefore defines a linear connection on M. By

using the connection coefficients I'f,, we can define two connections V and V with

the connection one-forms
ry =19, dz" and T =T%, da” (3.4)
respectively, which are different when the torsion (2.25),
TP =T Ada” = dat AT, (3.5)

does not vanish, 7%, = QFf’W] # 0. The Leibniz rule of the Poisson bracket,
d{f,g} = {df, g} + {f.dg}, implies that the connection V satisfies

Vb = 9,0 +1%,6°° +T% 6" =0, (3.6)
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ie. V is a symplectic connection.” Together (3.2) and (3.6) imply two covariant
versions of the Jacobi identity

S0V, =0 and Y 00T =0 (3.7)
(1sv,p) (ksv5p)
Imposing either V,0"” = 0 or T, = 0 would lead to a single torsion-free symplectic

connection V = V, but this is not necessary. The curvature two-forms (2.26) of V
and V are given by

RM, =dT4 +THATS and RV, =dI% +THATY (3.8)
respectively, and we use the Poisson bivector #¥ to raise their lower index, e.g.
RM = 6" RY,. (3.9)

The curvature two-form of a symplectic connection V is symmetric R = Rv*

Note that, unlike V,,, the covariant derivative V,, does not commute with the raising
of indices with 0*¥, because V is not symplectic. Indeed (3.6) implies

V07 =T",,07° + T%,,0° . (3.10)

The unique Poisson bracket of differential forms «, 8 € Q(M) of nonzero degrees
that is consistent with the graded differential Poisson algebra has been defined in
Refs. 4 and 3,

{a, 8} = 0""V,a AV, B+ (—1)¥B@D R NG Niy 3, (3.11)

where deg(a) denotes the degree of a and 4,« is the interior product of o with the
uth basis vector. Covariant derivatives of contractions like (2.37), including multiple
covariant derivatives, are present when several Poisson brackets (3.11) are taken,
e.g. {a,{B,7}} In order for the Poisson bracket (3.11) to satisfy the graded Jacobi
identity the connections have to satisfy the following additional constraints:

R, =0, (3.12)
VARM . =0, (3.13)
> RMNIGRY =0, (3.14)

(kv5p)

where the last constraint (3.14) is, however, implied by the two former constraints,
the Leibniz rule and the Jacobi identity (3.2).10:3:]

hWe call a connection V symplectic if wyr or equivalently 0#Y is covariantly constant under the
covariant derivative.

¥(3.6) implies: 0 = [V, Vo]0# = —T* V0* + R\ 02 + RV, 04 = —R™ )5 + R" s
J(3.12) is implied by the Jacobi identity for two functions and one one-form and (3.13) by the
Jacobi identity for one function and two one-forms.?
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3.2. Poisson algebra of tensor-valued differential forms

We want to extend the graded differential Poisson algebra of differential forms by the
covariant derivation V. This is achieved by generalizing the Poisson bracket (3.11)
for tensor-valued differential forms. In other words, the Poisson bracket should be
generalized to accept forms whose components have additional tensor indices. Then
Poisson brackets like {V,a, 8} will be naturally defined. This would enable us to
define the related star product for all tensor-valued differential forms, which enlarges
the applicability of the formalism. The curvature two-forms R*” and R* and the
torsion two-form T are examples of such forms. Such star product could indeed be
useful for defining noncommutative deformations of gravitational theories, whose
actions involve the curvature two-form(s). Next we propose such a formalism that
generalizes the approach of Refs. 4 and 3, and also corrects the misunderstandings
found in Ref. 4.

3.2.1. The algebra of tensor-valued differential forms

We choose to work in a local coordinate system {x“}zi:mlM of M. This approach
can, however, be repeated by using any local smooth frame of Q(M,T), with the
frame transformations (2.21) defined to be compatible with the symplectic structure
of M.

The exterior product (2.14) of two tensor-valued differential forms A €
QP(M,T*!) and B € QI(M, T™"),

1

A'ulmukul.--w - pl Aul.'.ukm...wPL_-pp dxpl VANEERIWAN dl'pp ) (315)
Bt = aBMl Mml’l"'Vn,Pl"'ﬂq dzfr A -+ AdaPe (3.16)

is a tensor-valued differential form A A B € QP+a(M, TF+™4n) defined by

(A/\B)#l“'#ker

Vi Vign

(AN By Heem daz? A« A dzPrta

V1 Vi4nP1Pptq
(p+q)!
— 1 AH1Be B+ Hktm dzPr A - A dgPrta
- p|q] V1P Pp Vi41 " VitnPp+1"Pp+tq

— Hi i m
— AM #qu-"l/z/\B k1t Hk (3.17)

V41 Vi4n *

The exterior product (3.17) satisfies the following properties for arbitrary tensor-
valued differential forms A, B and C:

(i) AANB =0 if deg(A) + deg(B) > dim(M).
(ii) Degree:

deg(A A B) = deg(A) + deg(B) . (3.18)
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(iii) Symmetry:
Altl"'mcylmw A BP1Pm

o1 On

= (_1)deg(A) deg(B)Bm---pmm“ﬂn A AR R (3.19)

iy
(iv) Associativity: (AANB)AC = AN (BAC).

It is necessary to write A"*""#*, ., instead of just A in the exterior product (3.17)
when the order of the factors is changeable as in (3.19), because the tensor product
is generally noncommutative, A ® B # B ® A. One can write (3.19) equivalently
as AN B = (—1)deedes(B)(B A A) 0 0 ;), where the map o(;,;) moves the first
k covector arguments and the first [ vector arguments over the rest of the argu-
ments of each type, O’(kJ)(Oél, ooy Oftm, Xl, ey Xl+n) = (ak+17 ey Oy, O, o e ey
Oy Xit1y -+ oy Xign, X1, - .., X;). We, however, prefer to keep track of the order of
the arguments with the tensorial indices.

The interior product of tensor-valued differential forms can be defined so that
it recognizes only the form part of tensor-valued differential forms. The interior

product of A € QP(M,T*!) with the coordinate basis vector 52 is the map
i# : QP(M’ Tkyl) - Qp_l(M7 Tk7l+1)a
1 (3.20)
AP L ATy 22 A A 2

(p—1)!

It satisfies
Z'p(A#r“#lemyl A BPl“'Pmalman)

. el P dee(A . p
— ZPAM #kyl---yl/\Bpl p + (_1) eg(A) g #kyl"'yl/\Zpol P

01 On T1On

(3.21)

and 7,1, A = —i,i,A. Zero-forms vanish under the interior product i,.

The exterior covariant derivative D (2.16) is used instead of the exterior deriva-
tive, because the latter maps tensorial differential forms to nontensorial ones. The
exterior covariant derivative (2.27) is now written

k
1 fg _ 1 i M1 phi—1PHi+1 Lk
DA vy = dA oy + E rhin A B
i=1
l
P M1k
—Y ToAA i i (3.22)

i=1

where the exterior derivative d is given by

p, Az Ada?t A A dafr (3.23)

ViU P

JAM Ly g
V1eeup p' o
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D satisfies the same Leibniz rule as d,

D(Am---ukyl___yl A Bpl---pmglmgn)

el D dee(A D
= DAMHE N BPYP +(-1) g(4) g M N DBPYP

T1On g1 0y "

(3.24)

The exterior covariant derivative D of the other connection is defined analogously
by using the connection one-form I'Y instead of I'%.
A connection also provides the covariant derivative on Q(M,T)
YV, : QP(M,TH) — QP (M, T (3.25)

that is defined in (2.31) and (2.33) (see also (2.34) and (2.35) for the present case
of a coordinate basis). The covariant derivative of a tensor-valued differential form
can be written in a compact form as

k
1 _ 1 g i AMLHi—10 i1 Hi
VAt = QAR N T A
=1

l
_ Z FZViAm-“Mkul---wflUVHr"Vz _ I“Z A Z'aAﬂl"'#kyl---up (3_26)
i=1
where we denote
1
Op Ay = O Ay QTP A N P (3.27)

Definition for the other covariant derivative ﬁu is analogous (replace I'f, with I'} |
and fﬁ with I'/). When the second covariant derivative V,V, A" ", is taken,
the subscript o is treated as a covariant tensor index. The commutator of second
covariant derivatives reads

[Vp, VJ]AM "'ltk-y

L
k

A IR i Mt i — 1 A1 fh

= TMVAA vy T R )\pgA

i=1

vy

l
_ § A M1 fk _ pA T A Gy AL HE
R A V1 Vi1 AVig1 U R Tpo dz” NiyA Vi

Vi po
i=1

(3.28)

v

The covariant derivative has the Leibniz rule
V/\ (Aulmmcm---w A Bplmpmdl“'dn)

= V/\A/h"'ltkylmw A BP]"'PmG o + Altl"'ukylmw A V/\Bﬂl"ﬁmglman . (3.29)

1

We can find a useful relation for D and V, by multiplying (3.26) with da”A
from left

da? AV AR HE = DARTRE TP G, AR R (3.30)

vyt



3778 M. Chaichian et al.

We can even write it as a local operator identity

D=da" AV, +T" Niy,. (3.31)
Once again a similar relation holds for the other connection

D=da" AV, —T" Ai,,. (3.32)

We shall occasionally refer to both V and D as the connection — similarly for v
and D.

3.2.2. The Poisson bracket

Now we can extend the Poisson bracket (3.11) for tensor-valued differential forms

{A#l“'#k BPl“'ngl___gn}

[ 2R 7]

— HATV)\Aul"'#kylmyl A VTBPI'“pm

o1:0n

+ (—1)deB I RAT Agy A NG BPY P (3.33)

o10p "

If either AM*"H%, ., or BP*"Fm_ ., (or both) is a tensor field of zero form
degree, the Poisson bracket is defined by

{AMI'”Mkyl-“UL’Bpl"'pnla'l‘“a’n} — QATVAAHJ-.-/J/IC VTBPl-../JmUlmdn7 (3.34)

V1Y

which is also consistent with (3.1) and (3.3) (we essentially consider that the interior
product of a zero-form is zero).

The Poisson bracket (3.33) of tensor-valued differential forms satisfies the fol-
lowing properties of the graded differential Poisson algebra. For A € QP(M,T*')
and B € Q4(M,T™") and C € Q"(M,T"7) we have:

Bracket degree
deg ({Aulwukul---yﬂ BP]-..melmGn}) = deg(A) + deg(B) , (335)

which is implied by the following properties. The covariant derivative (3.25) does
not change the degree of tensor-valued differential forms, deg(V,A) = deg(A). The
interior product (3.20) reduces the degree by one, deg(i,A) = deg(A) — 1. The
exterior product (3.17) has the degree (3.18).

Graded symmetry

M1k P11 P
{A V1'“VL’B mUl“'Un}

= (—1)deg(A) deg(B)+1{Bm---pmalmgn’ Am---ukyl___w} 7 (3.36)

follows from the symmetry property of the exterior product (3.19) and from the
antisymmetry of #* and the symmetry of R*” under p < v.
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Graded product

e 1 Pm A1
famem, onBrn oM
— AM1HE P1L " Pm Ar-e i
= am, o n B o

+ (_1)deg(B) deg(C’){AM'-'Mk C)\l"')\i } A Bﬂl"'ﬂmmmgn (3.37)

Vv Ty

follows from the Leibniz rule for V,, (3.29) and the similar property for i, (3.21)
and the symmetry property of the exterior product (3.19).

Leibniz rule

p1Pm
B S

[ 2R 2]

D{Am---ukwmwBpl---pmglmgn} — {DA#l"'lLk

+ (—l)deg(A){AMI"'Mkyl...ylvDBPI"'pmgl...gn} .

(3.38)
By applying the Leibniz rule (3.24) to the left-hand side of (3.38), we obtain

M1k P1Pm
D{A v 7B Ul"'Un}

10

A e Dm
= DO /\V)\AM Mkylmyl/\VTBpl 14 -

10n

o1:0n

_A'_Q)‘T(DV)\A'L”“'W“VI_”W/\VTBplll'pm
+(=1) s(A)y, A My NDNV 2 BPYP 0-1...0'">

+ (—1)WEDDRN Aiy AR, A B

o1:0n

+ (—l)ng(A)R)\T A (Di)\Aﬂlmﬂkl,l,,,Vl/\Z.TBplmpm

1O
+ (—l)ng(A)_li)\Am"'“k,,l...l,l A DZ'TBm-..meIMUn) . (3'39)

Then we use (3.31) to calculate the relation of DV, A" "#*, ., —and
VaDAF B . First we calculate

DV, =dz" AV, V,+T" Ni,V, (3.40)
and
V.D=daz" AV, V, +V, T Niy, +T" AV iy (3.41)

and find out that V, and ¢, commute (follows from (3.20) and (3.26) by direct
calculation, recalling i,i, = —i,i,)

Z‘UvﬂAﬂr'uklIlmyl = V#Z'UAﬂl'-'#kV (3'42)

IR Z R
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which then together imply
DV, =V,D+daz" N[V,,V,] =V, T" Ni,. (3.43)
Thus we obtain the relation

DV Atbe = V\DAM e dal A [V, VAJAR e

11

— VAT A AP i (3.44)

vyeevgt

This result can as well be derived directly from the definitions (3.22) and (3.26),
but it is a lengthy calculation. By using the definitions (3.22) and (3.20) we obtain

the relation of Diy A" "#*, .., and ixDAM" "H*,

(Diy +inD) AR AR TP NG AR (3.45)

IR /R

where we have also used (3.23), (3.26) and 4,77 = T'; — T';. Introducing the results
(3.44) and (3.45) into (3.39) yields

D{A#l“'#k BP1 o Pm }
vy 1O
_ {DAMMW"M...WBmmpmgl---an} + (_l)dcg(A){Aul---ukmmuwDBm-..pmGlmGn}

+ DO A VAR AV BT P

01°:0n
(L1 (DR 4 BT A G T+ R 6T

/\Z'/\Aul"'uk /\Z’TBpl"'Pm

vy o1 On

+ 9% (R)\¢ _ V¢T>‘) A Z-)\Am---mcyl___w AN BPrPm

10n

+ (_l)dcg(A)g)\d? (RTgb _ V¢TT) A v)\Aﬂl"'#kUlmyl A iTBpl‘“pma’l"'G'n

+0Mdz® A ([vmv)\]AMkaul---u, AV, BPLPm

o1 On

+ VAAﬂl-..MkUlmyl A [V¢, VT]Bpl-..pmalman) , (346)

where some regrouping and simplifications have been done. For further simplifica-
tion, we calculate

DR™ + RP” Ni,T" + R" N i, T"
=dR" +T¥ AR +T% AR' = DR"™ = D(0"*R",) = DO" AN R",, (3.47)

where (2.30) has been used in the last equality. As a final step we introduce (3.28)
to the right-hand side of (3.46) and combine the contributions of the first and the
last term of (3.28) to the third, fifth and sixth term of (3.46). In the third term of
the resulting expression, we calculate

DM + 0PV, TH + 0175, T" = DO* . (3.48)
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Thus we obtain the result

M1k p1p
D{A Vl"'VNB m01-"‘7n}
— M1 Pk P11 P
= {pamem, B,

+ (_l)dcg(A) {Aﬂl"'ﬂk s DBpllupmo'l...o'n}

V1

+ DG” A V/\Altl"'ukylmyl A VTBPI"'an

01 0n

+ (=14 DYN A RT Nig AP N B

o1 0On

+ 9¢T (RA¢ — V¢T)‘ + i¢R/\X A dl'X) A i)‘AMI"'Mkm“-UL A VTBPI...pmG

-
+ (=14 (RT | — VT +iyR™, A daX)

A v)\Aﬂr"#kUlmyl A Z'TBpl"'pm

o1 0On

k
; 1223 Ml"'Mi71¢Mi+1"'uk
(E IR ¢/\A e
i=1

_ 6)\7'

l
. 1) 1
— ZZAR vi A At le"'Vi1¢Vi+1"'Vl>

i=1

AV, BPrPm o VaArh

o110 V1

m
ki P Pi—1PPi4 1 Pm
A ( E i R", N B 010
i=1

_ Z iTR¢Di A Bpl-.-ﬂnla’l“‘a’i1¢Gi+1-“an>‘| . (3.49)

i=1
Hence for the Leibniz rule (3.38) to hold for arbitrary tensor-valued differential
forms, we have to introduce the following constraints:

(i) The connection D is symplectic

D™ = (V,0")dz" = 0. (3.50)
(ii) The interior product of the curvature of V vanishes
iR, =0. (3.51)
This implies that the curvature of V has to vanish, R”, = sdat A iR, =0.
(iii) The curvature two-forms and the torsion two-form satisfy
R, =V, T" +i,R*, Ada’ = 0. (3.52)

Taking (3.51) into account we obtain

RM, =V,TH. (3.53)
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It would be quite tempting to require that the other connection D satisfies a
similar Leibniz rule as (3.38). Such property would impose additional constraints
on the connections and further restrict the geometry. However, we do not require
such property for D, because the Poisson bracket (3.33) has been defined with V,
not with V, which makes D the natural choice for the Leibniz rule (3.38).

Graded Jacobi identity

e p1p A1
{amem, B O

e R L (Cia Y L

+ (—1essdeaBlden@ fohede g, B 4L =0,

(3.54)
First we calculate the Poisson bracket
{Amm”km...yl, {Bplmpmal---aw C)\l'“)\in---rj}}
= 071V, 90V g AP, A, BRI A, O
+ gPrxagPaxz (V¢1 Arrtt o NV Vg, B e A Vs CAIW/\iTl"'Tj

. p ApeA
+V¢1Am m‘l,l...yl/\V¢QBp1 P 01...(,”/\VX1VX20 ! 7—1---7'1)

+ (_l)dcg(B)g¢1X1 Vi R#2x2 A Vg, Arabe

10

. p1p . Apee A
AN Z¢ZB " oo, N ZX2O 17_1”'”

1]

4 pPixa R?2x2 A ((_1)d6g(B)V¢1AM”'“‘“V

. L Pm . A1
N /L¢2leB o1 0O A ZXQC TyoeTy

deg(B e . P . AN
+(_1) g )vd?lA#l ﬂkyl---yl/\z¢2Bp1 ’ 01---0n/\ZX2vX1C ! T1Tj

deg(A) el . e Dm A1 Ag
+(_1) Cg( )Z¢2A#1 #kul---yl/\zxzvfi’prl r o1 n/\vX1C !

.o LTy

deg(A)-+deg(B) ; . . AAi
+(_1) eg(A)-+deg( )Z¢2AM1 Mkyl.--ul/\v¢1Bpl p o1 n/\lX’.’VXlC ! .,-1...7-])

+ (_l)deg(B)—1R¢1X1 A Z'XIR¢2X2

A i¢1AM1kay1---yl N, BPYPm o N ixzc«/\l---M

1 T1°Tj

+ (_l)deg(A)+deg(B)R¢1X1 A R¢2X2
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. A1
01°:0n A ZX2C

e . p1ep
A (z¢1A ooy Ny ig, B m

Ty
deg(B)+1, . P .. A1 A

+(_1) Cg( ) Z¢1A#1 #kl/l---ul/\l¢2Bpl r 01---0n,/\ZX12X2C ! 7'1---7'])7

(3.55)

where we have used (3.42). Cycling through A" "#*, ., BP"fm, . and
A1 . . .
CH L, using the symmetry property (3.19) of the exterior product and intro-

ducing the expression (3.28) for the commutators of covariant derivatives, gives the
left-hand side of the graded Jacobi identity (3.54) as

{AHI"'Mk {Bpl...pm C)\l...)\i }}
Ve 1 o) Ty
+ (_1)dcg(A)[dcg(B)+dcg(C)]{Bm-.-pmglman’ {C)\llu)\i‘rl'“‘f'j’ A#l-..ukyl___yl}}

T (—enArrdenBdes(@) fphaon (g

ViU

BPl“‘pm }}
01 0On
= [gdma (vxlgrbzm _ 9¢2¢TX2XI¢) 4 gP2x (vxlgxml _ awamxw)

4 gxexa (VX1 P12 _ 9¢1¢T¢2Xl¢)} 2 Apab

1y

D A1
AV gy BPPm o NV, TV

1 10T

k
4 Pr1x1 gP2x2 [(ZRpi¢¢l¢2Aul...#i1w#i+1.,,#kylmyl

i=1

l
(4 1o e
_ZR Vz‘¢1¢>2A V1---Vi1wvi+1“'vl>
i=1

- Dm A1
/\leBpl g n/\vX2C ! Tl---7j+v¢1AM1 Mku

o110 11

k

Pi pP1Pi—1YPit1 Pm

A (ZR 7J’X1¢2B 010n
=1

l
_ P P11 Pm
ZR 0iX1¢2B 010 1Y0i41"0n
=1

Az et o
A Vi, CM ___Tj+v¢1Au1 ’”‘yl...w/\V@Bm p

T1

k

§ : Ai AN 1P Aipr A
A( R ¢X1X2C Ty

i=1

o1 On

l
_ E p A1y
R TiX1X2O T1 T 1Y Tig1 T

i=1
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- R’ LAV CRA

og

wo1¢2 Tyt

dz® A (id)ANl'”Mlemyl A leBﬂl"'ﬂmalm

(L)Y A NGB A O

o100 10T

+ (_1)d0g(A)+d0g(B)vX1Am---ukyl___yl AV, BV P A iwckl---kinm_r)]

1]

+0¢1X1VX1R¢2X2 A ((_l)dcg(B)vd)lA#lm'uku

NigyBPY P o Ny, O

LTy

deg(A)+deg(B)+1, D . A1
+ (—1)deslrdeaB)TLy  guabn NN g BRI N g, O

o T Tj

deg(A) - . P A1 N
F(—1)des(A)g gmee NG BPTP A Vg, CM 7'1---7'])

1 o1 On

+ (_1)d0g(3)—1 (R¢1X1 A Z'X1R¢2X2 + R?2x1 A Z'X1RX2¢1 + Rxexa p Z'X1R¢1¢2)

Ndgy AFVME L Nig, BPYTPT Ny, O (3.56)

g1-0. 7—1...7—].'

Since the graded Jacobi identity (3.54) requires that the right-hand side of (3.56)
vanishes, we have to introduce the following constraints:

(i) A covariant version of the Jacobi identity for the Poisson bivector

>0 (Ve0" — 0T ) = Y 00T =0, (3.57)
(1,v,p) (1,v,p)
where (3.10) has been used in the first equality. This constraint is already
satisfied (3.7).
(ii) The curvature tensor of the connection V vanishes (3.12).
(iii) The curvature two-form of the connection V is covariantly constant under V,

V.R" =0. (3.58)

This is equivalent to the curvature tensor of v having the same property (3.13).
(iv) The curvature RM¥ satisfies (3.14).

Comparing the constraints needed to satisfy the graded differential Poisson
algebra of tensor-valued differential forms to the constraints (3.6) and (3.12)—(3.14)
for differential forms obtained in the literature, we find that there is no need for new
constraints. There are new conditions (3.51), (3.53) and (3.57) on the connections,
but they are all satisfied due to the vanishing of the curvature of the connection V
(3.12), the definition of the two connections (3.4) in terms of the same set of connec-
tion coefficients and the covariant Jacobi identities (3.7).X Thus this generalization

kSee Refs. 9 and 3 for how the condition (3.53) is implied by the definition of the two connections
(3.4), the vanishing of the curvature of the connection V (3.12) and the so-called first Bianchi
identity (2.29) in its tensorial form.
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to tensor-valued differential forms does not require any additional constraints on
the connections.

It has been shown® that due to the constraints (3.12) and (3.6) there exists a
local coordinate system {®*} where the connection coefficients are given in terms
of the invertible Poisson bivector 87 = {®% "} as

I'%, = 0*0pws, . (3.59)

Here we refer to these coordinates by the first part of the alphabet «, 3, v, .... The
form (3.59) of the connection coefficients I, is covariant under the group of affine
transformations of the coordinates ®<,

P — N%®F + V>, (3.60)

where N and V* are constants, since both sides of (3.59) transform like tensors
under such affine transformations. The torsion tensor and the (nonvanishing) curva-
ture tensor are, of course, also given by the Poisson structure in these coordinates,
eg. T%, = Ho“sagwg,y. Another special basis is provided by the one-forms P,gd®”,
with respect to which the connection V is trivial, that simplifies many calculations.
Most importantly one finds that the Poisson bivector is quadratic in the coordinates
®“ by solving the identity Raﬁ'ﬂs = 03T, for the torsion and then the torsion
T, = 0,0°7 for 2P !

1o « 1~ « o «
07 = {d*, P} = 5R.s Po100 4 foPRY  goF (3.61)

where Ra6767 fﬁﬁ and g®? are constants (all antisymmetric under a « 3). This is
somewhat analogous to Darboux’s theorem for symplectic geometry.

We provide some further analysis on the constraints imposed on the connections.
First we calculate the vanishing covariant derivative V,, of Rvp (3.58) by using the
formula (3.10) that is implied by the symplecticity of V:

VR =V, (07 R,) = (T"\0 + T°\0" )R, + 0"V, R, = 0. (3.62)

Multiplying by the symplectic form w,, (sum over v), introducing the constraint
(3.53) and renaming some of the indices yields

(T win0™ +1°,,)VeT? +V,V, 77 =0. (3.63)

Thus the second covariant derivatives of the torsion can be written in terms of first
covariant derivatives of the torsion multiplied by the torsion, the Poisson bivector
and the symplectic form.

Let us consider the antisymmetric and the symmetric parts of (3.63) with respect
to the indices p and v. According to (3.28) and the vanishing of the curvature of
the connection V (3.12) we have [V, V,] = =T, V,. Hence we can decompose

1
V.V, = V(MV,,) + V[ny] = V(MV,/) — §T”WV,, . (3.64)

'Here we have used 8% and wqp to raise and lower indices respectively. See Ref. 9 for details.
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Thus the antisymmetric part of (3.63) is

1
5 ((TAWWUA — T, )07 + T"W)VJT” ~0. (3.65)
Assuming (3.53) does not vanish, (3.65) implies
(T, ;wir = T, ;w0 )07 + 17, =0 (3.66)
or equivalently
> T%we=0. (3.67)
(1,v,p)

Together (3.7) and (3.67) impose a fairly strict set of conditions on the torsion —
though not enough to fix it completely.
The symmetric part of (3.63), which can be written

1
VT’ =5 (1%, \wvo + T \wpo )0V T7 (3.68)

does not provide such an interesting result.

3.3. Star product

The star product for tensor-valued differential forms can be defined similarly as in
Ref. 3,

Aﬂl“'#k o * BPl“'Pm

— AH1I PR p1p
Vi =A V1"'Vz/\B m

Tl On o1 0n

+ Z mc, (Alll---,ukylmyl’ BP1-..PmUlmU") , (369)
n=1

where C), are bilinear covariant differential operators of at most order n in each
argument, which are constructed from the covariant derivatives V,, the Poisson
bivector 6, the torsion tensor and the curvature tensor(s). Further the operators C,,
are chosen so that the star product (3.69) satisfies the following properties:

(i) The star product is associative

K1 p1Pm A1
A (B g R OV )

o p1 e PL " Pm A1
=(A vy * B oron) *C S

(3.70)
(ii) The first order deformation is given by the Poisson bracket (3.33)
C, (A#l“'#ky BPl“'PmUI'”UH) — {A#r“#k’/ ’Bpl"'Pmalmgn} . (3_71)

L -
(iii) The constant function, M > z — 1, is the identity: 1+ A = A% 1= A.
(iv) Every C, is of order n in the Poisson bivector 6 (including its covariant deriva-

tives (3.10) and the curvature (3.9)) and it has the degree

deg((Co (A9, B 07, ) ) = deg(A) +deg(B) . (3.72)



Covariant Star Product on Symplectic and Poisson Space—Time Manifolds 3787

(v) The operators C,, have the generalized Moyal symmetry
Co (AP 8 BPYPm )

ViU

= (_1)deg(A) deg(B)+nCn (BPI"'PmJ ’A,ul"'ukl/lmw) ) (3.73)

10n

To the second order in the deformation parameter £ the star product is given by

M1k P1 " Pm
CQ(A v 7B 0'1"'0'71)

10

1
— 50)\171eAzrgv)\lv)\zAm-“#kwmw A vﬁvam-“pm

o1 0n

1 AT Ao T 1)\¢T A
+§<011v7_1022+§02 02XT lqﬁx

o1:0n

X (V/\IVMAM'“#I@V]MW A VT2B91“'Pm
VA ATV B )

+ (_1)d0g(A)9)\17'1 R)\zm A V/\1 Z'/\2A#1“'#kylmyl A V-,—l Z’T2BP1"'Pm

o1 0n
_ ER)\lTl A R)\27'2 A 1 A#l"'#k ANl 1 BPl“‘Pm

2 /L/\lz/\f_) V1 27'127'2 O1:0p
1
3

_ R)q‘rl /\iTIR/\sz A ((—l)deg(A)i)\li)\2A“1"'“k

v
Nigy BPYPm o i AR A ixliTQBpl“'pmgl...%) . (3.74)

The second term of (3.74) can be simplified by using (3.10) and (3.7),
017V 50" + %QVGHP’\T“M = —%9”"9”’\T“M : (3.75)

but we choose to keep the similarity with the star product of Ref. 3.™ Proof of
the associativity of the star product (3.69) to O(h?) is completely analogous with
Ref. 3." At the classical level O(1) the associativity is trivially implied by the
associativity of the exterior product. At O(h) the associativity is implied by the
graded symmetry rule (3.37). At O(h?) the associativity condition

e P1 P A1 Ag
A NGB chr L)

01°:0n)
— O APr B A BPLPm C>\1"'/\i
2 V1w O1e o) 1T

. Do Ay
F (A, B, NN Y

1o o100

MThere is a sign difference in the second factor of the second term of (3.74) compared to Ref. 3
that is enabled by the antisymmetry of the first factor under A2 < 75. The motivation for this
cosmetic change is to emphasize the symmetry property (3.73) of Ca.
"Due to the vanishing of the curvature of the connection V the tensorial indices can mostly be
ignored in the calculation verifying the associativity (3.70) to O(h?).



3788 M. Chaichian et al.

_CQ(Am---ukV BPLPm " ) /\CAl---Ai

R 2kl o1 LTy

= Cl (Cl (Alulm}uklll"'l/w Bplmpmo'l..-0'n> ) CAI“‘)\I.TI...T])
- Cl (Alulu.lukyl..-yﬂ Cl (Bplu.pmo'l...o-nj C)\ln)\i.,-l...f])) (376)

can be shown to hold by using the properties of the Poisson bracket, the constraints
these properties imply — namely (3.6), (3.7), (3.12)—(3.14) — and the properties
of the covariant derivative and the interior product — including the commutativity
of the two (3.42), i,i, = —i,%, and the decomposition (3.64).

As discussed in Ref. 3 the next order A® deformation could be derived with a
considerable amount of calculation by finding an ansatz that satisfies the required
conditions.

If the torsion vanishes, we have a flat symplectic connection V. Then the star
product (3.69) can be defined by

A#l“'#kulmyl % BPLPm

o1:0n

T=0

= A#l"'#kulmyl A BP1Pm

O10n

o0
A"

n=1

p1p
L/\le"'anB ma'l---a'n7

(3.77)

since now the covariant derivatives commute both with each other and with the
Poisson bivector 6.

3.4. On the algebra of tensors

Thus by starting from the graded differential Poisson structure on the algebra of
forms Q(M ), we have generalized it to the algebra of tensor-valued differential forms
(2.13) and consequently to the subalgebra of all tensor fields on M,

T(M) = é QO(M, T c (M, T). (3.78)
k,l1=0

For such tensor-valued zero-forms the Poisson bracket (3.33) is reduced to (3.34)
and in the star product,

AMl"'MkUlmyl % BPLPm o = AP HE BP1Pm

o1 vy o1 On

+ Z hnCn (Aul...ltkylmyl’ BP1-..PmUl_”U") , (379)

n=1
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the deformation of order %2 is written

Cy (A#r“#k-y BPl"'PmUIMUn)

IR

10n

1oy o
— 50)\1 19A2 2V, Vi, A lukl/]---l/lv‘rl V., B pma
+ 1 9>\1‘r1v a2 + lgkmg‘rsz/\l
3 m 2 X

X (VM V/\z A ”'Mkyl---z/lsz BP1 "'Pma

1:0n

+ VT2 Alﬂ ..-,ukyl ---VLVM VAQ BP1 -..pmg1 ---o'n) . (380)
In the case of vanishing torsion we obtain the simple star product of tensor fields

M1k P1"Pm
A Vl“‘Vl*B 01"'0n|T:0

o1 0 *

(3.81)

= Aulmukul...yl €xXp (h§A0A76T>BPI"'pm

In the recent work Ref. 5, a covariant star product of functions was defined on a
symplectic manifold with vanishing torsion and curvature (T = R = 0). It was
also proposed that this star product could be straightforwardly extended for tensor
fields. We recognize that the reduced (T = R = R = 0) case (3.81) of our more
general star product of tensor fields (3.79) is exactly what the extension of the star
product of Ref. 5 to tensor fields would be.

3.5. Discusston

When we consider possible applications of these star products (3.69) and (3.79) in
physics, particularly gravity and gauge theory, the problem (perhaps also a possi-
bility) is that the structure of the graded differential Poisson algebra of (tensor-
valued) differential forms requires strict constraints on the underlying symplectic
manifold. Due to the required constraints the torsion and the curvature are rather
restricted, which is likely to cause some problems particularly for theories of gravity.
Still the connection V can have a nonvanishing torsion and in this case the sym-
plectic connection V also has curvature. This should open up the possibility for
some nontrivial gravitational dynamics.

In the extremely restricted (T = R = R = 0) case (3.81) that was also recently
studied in Ref. 5 there is virtually impossible to have a nontrivial theory of gravity,
because neither the energy—momentum tensor nor the spin density tensor are sup-
ported due to the vanishing of both the curvature and the torsion. Setting up the
equivalence principle would clearly be impossible. Thus this star product (3.81) can
be used only in cases where the curvature and the torsion vanish in the correspond-
ing commutative theory. Then in the noncommutative extension of the theory we
would find corrections to the geometrical objects in the higher orders of the defor-
mation parameter A due to the star product. In the gravitational field equations
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these corrections would require compensating corrections to the energy—momentum
tensor and possibly to the spin density tensor depending on the chosen action. This
is problematic since, as we noted, matter fields are not supported in this case.®
An example of such theory is the two-dimensional noncommutative dilaton gravity
studied in Ref. 5.

In the case of gauge theory, these restrictions are not quite as severe as in the
case of gravity. Noncommutative gauge theory with Yang—Mills actions has been
studied'' 13 in this setting. The former work employed the popular Seiberg-Witten
map.'4 In Refs. 12 and 13, the star product of differential forms was generalized to
Lie algebra-valued differential forms in order to be able to apply it to the connection
one-form of the gauge theory, as well as to the gauge transformation parameter and
the field strength, which are all Lie algebra-valued. This generalization is fairly
simple to achieve since the generators of the internal gauge symmetry commute
with the covariant derivation V. The generalization to tensor-valued differential
forms we have presented can be further generalized to Lie algebra-valued objects,

AP o — AMI"'Mkyl---ulaTa7 (382)

v1

where T, are the generators of the Lie algebra, along the lines of Ref. 12 with
relative ease.P The star product is defined by

M1k P1 P
A Vi * B nlg

= AMl"'Mkylmyla /\Bﬂl"'ﬂmglmganaTb

10

+ Z hncn (Alltl---lltklll"'l/]'a , Bpl..lpmal---g"b)TaTb ,
=t (3.83)

where the operators C), are defined as before. In order to obtain a star commutator
that is consistent with Ref. 12 we have required the symmetry property (3.73) for
C., though it is not required in Ref. 3,

(At B o)
=AMk BV (_1)deg(A) deg(B)Bm---melmU" * AR
- AM1---MkV1___yla /\Bpl---pmal___anb[Tme]
oo
LYo, (A, e B )T T (3.89)
n=1

°Such corrections to the right-hand (energy-momentum) side of field equations frequently appear
in noncommutative theories of gravity when a star product is introduced. Particularly in the case of
vacuum field equations such corrections cannot be associated to matter fields, because presumably
there is no matter in empty space. So the corrections would have to be physically interpreted as
some kind of energy—momentum inherent to the noncommutative space-time. However, at this
point such interpretations are mere speculations.

PPlease note that one of the misunderstandings of Ref. 4 has been inherited to Ref. 12. Namely,
[V, Vu]a = 0 is not required for any o € Q(M), since it would also imply that the torsion
vanishes, which is not necessary.



Covariant Star Product on Symplectic and Poisson Space—Time Manifolds 3791

where [Ta,Tb}(n) = T, Ty, — (—1)™TyT, is the anticommutator, {T,,T,}, for every
odd n and the commutator, [T, Tp], for every even n.

4. Covariant Star Product on a Poisson Manifold

In this section, we discuss a covariant star product on a regular Poisson manifold M,
first for functions and then for tensor fields. Since M is regular, we can require that a
linear connection exists on M. On a nonregular Poisson manifold we would generally
define a different connection on each symplectic leaf of M, or define a contra-
variant connection on M and use the associated contravariant derivative instead of
a covariant one.'® 17

It was shown by Kontsevich'® that a star product can be constructed for smooth
functions on R¢ with any Poisson structure 6 in the sense of deformation quantiza-
tion, so that at first order in the deformation parameter the star product is given
by the Poisson bracket of functions. A path integral formulation of the Kontsevich
quantization has been developed.'® The Kontsevich formula is not well-suited for
calculating the star product beyond A2, because it contains integrals that cannot be
solved by any standard method. The star product of functions has been calculated
up to h* by using a simpler iterative approach.?°

The existence of a covariant star product of functions on any Poisson manifold
(M, 0) with a torsion-free linear connection has been shown in Ref. 6 and given
explicitly to A% as an example.

4.1. Star product of functions
The Poisson structure on the algebra of smooth functions f, g € F(M) is defined by

{f,g} =0(df,dg) = 0"0.f0.9, (4.1)

where 6 is a Poisson bivector field, i.e. a smooth section of A2T'M. The Poisson
bracket (4.1) satisfies the required properties:

(i) Antisymmetry: {f,g} = —{g, f}.
(ii) Jacobi identity:

{f7{g7h}}+{gv{hvf}}+{h>{f7g}}:0' (42)
(iii) Derivation in the second argument:
{fvgh}:{.ﬂg}h_"g{f’h} (43)

when the bivector 0#" satisfies the Jacobi identity (3.2).
The star product of functions f,g € F(M) is defined by

frg=Ffg+Y H'Cul(f.9), (4.4)

n=1
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where the bidifferential operators C,, : F(M) x F(M) — F(M) are constructed
from the torsion-free linear connection V, the Poisson bivector and the curvature
tensor. At order i one has

The star product (4.4) is required to be associative to all orders in 7,
Fxlgnh)=(fxg)xh. (4.6)

Such star product of functions is given to order A3 by®

1
Oolf.9) = 0" 0°7V,V, [ Vi Vorg

1
+ gguavggl’p(v#vyfvpg +VpfVuV.ug)

1
+ avpgﬂl’vugpavyfvag7 (47)
1
Cs(f,9) = = 50" (Lx; V)i, (Lx, V) o (4.8)

where Lx,V is the tensor defined by the Lie derivative of the connection V along
the Hamiltonian vector field Xy = i(d f)6:

(Lx, V), =07"V,V, Vo f + V070V Vo f + V070V, V, f

+ VoV 074V f + R*,, 077V f . (4.9)
Note that since the torsion vanishes, T, = 0, the covariant derivatives commute
[Vl“ vl’]f = _Tp,u.yvpf = 07 (410)

for every f € F(M). This star product exists for any Poisson manifold (M, ) and
any torsion-free connection V.

A covariant star product of functions can alternatively be defined directly
according to the Kontsevich universal formula!'® by replacing the partial deriva-
tives 0, with the covariant derivatives V, in all C,,, n > 1. By using the results of
Ref. 20, one can write this star product up to order A*. At orders higher than A2,
where second and higher covariant derivatives of the bivector # appear, we have to
introduce another condition

[V, V1077 =0, (4.11)

in addition to the vanishing of the torsion (4.10), in order to ensure the associativity
of the star product. Thus the curvature tensor of the connection satisfies

[V, V)07 = =T%,, V077 + R’y 07 + R7, 07

= —0°*R", +0*R°,, =0 (4.12)

Apv Apv

or equivalently

RM, =R"™,, . (4.13)
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It is sufficient for 6 to be covariantly constant, V6" = 0, but it is not necessary.9
Without the above condition for the curvature we would have to add terms with
curvature contributions to the star product in order to satisfy the associativity re-
quirement. Indeed this approach is nothing more than a special case of the universal
star product studied in Ref. 6.

Relaxing the condition of Ref. 6 that the connection is torsion-free appears to
be very difficult without imposing some constraints on both the curvature and the
torsion. We shall discuss this briefly while considering a star product of tensor fields.

4.2. Star product of tensor fields

Although we have found a covariant star product of tensor fields on a symplectic
manifold as a special case of a star product of tensor-valued differential forms in
Sec. 3, we would like a find a construction with less constraints on the connec-
tion. Since it is the definition of the Poisson bracket that primarily imposes the
constraints on the connections in the case of tensor-valued differential forms, we at-
tempt to define a Poisson bracket of tensor fields with a minimal set of properties.

The Poisson structure (4.1) can be extended on the algebra of smooth tensor
fields A, B € T (M) by

{A#l“'#k Bpl‘“pmo'l"'o'n} — QATV)\AHI"';U%VI.”U[VTBpl"'pm (4'14)

vyeup? o1 0p "

For a function f € F(M) the bracket {f,-} is a covariant derivation with respect
to the second argument

{f, Am..-pkm___w} — vaAul..,#kU (4'15)

10

with the Hamiltonian vector field X J‘f = """V, f. We postulate the following proper-
ties for the Poisson bracket as a straightforward generalization of the usual case of
functions.

(i) Antisymmetry:
{Aﬂl ek

Bplmpmal...an} = _{Bpl“'pm Aﬂlm#kl/y"VL}' (416)

Vi) g1 0

(ii) Jacobi identity:
. P AN
{A#l Hkyl___yl’{Bpl P O T]"'Tj}}
e A1 e
+{Bm s {C’ N A ukyl___yl}}

+ {CAI"'/\iTl-..Tj’ {Aﬂlm#kyl‘“w’ Bplmpmgl'“a’"}} =0 (417)

4In the case of a symplectic manifold the condition V0”7 = 0 would be equivalent to the
symplectic form w to be covariantly constant, i.e. having a symplectic torsion-free connection.
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(iii) “Derivation in the second argument”:

M1 Pk P11 Pm A1 g
{A vy B 0'1---0'nC 7—1...7—].}
_ 1 pLep A1
- {A Vl"'VL7B m01---0n}0 T1+Tj
Pl Pm 1 A1 Ns
+B Ul"'Un{A V1"'Vl7C 7'1---7']}' (418)

The Jacobi identity (4.17) imposes the following two constraints on the connec-
tion V:

04 (Ve0? — 0°2T7 ) =0, (4.19)
(1,v:p)

OHr0""RP | =0. (4.20)

Note that according to (4.20) the curvature tensor does not need to vanish every-
where since the Poisson bivector 8% is not necessarily invertible.

Then we quantize the Poisson manifold by defining a covariant star product of
tensor fields as in (3.79). The order /i deformation, C1, is again defined to be the
Poisson bracket (4.14). The operators C,, are chosen to satisfy the same properties
as in Subsec. 3.3." A propriate ansatz for Cy can be found by calculating the side
of the associativity condition at order A2 that depends on C; and choosing a Cs
that produces a similar expression on the other side of the condition. We choose C5
to be of the same form as in (3.80). The associativity property of the star product
imposes the additional constraint

> ome (V(,H”" + %G’MT”M> =0. (4.21)

(kv,p)

In order to satisfy both (4.19) and (4.21), we require that the connection satisfies
the covariant Jacobi identities (3.7), so that the cyclic sum over each of the terms
of (4.19) and (4.21) is zero. Thus the constraints (3.7) and (4.20) are all that is
needed for a covariant star product of tensor fields on a Poisson manifold up to
order h2.

In the case of a star product of functions there is no need for the constraint
(4.20). However, the other constraints (3.7) are required, and they constrain the
connection so that both the torsion and the curvature are affected. Thus relaxing
the torsion-freeness constraint has lead to having some constraints for both the
torsion and the curvature.

At present it is unclear whether additional constraints need to be introduced
for the connection at higher orders in A.

'The sign factor in the symmetry property (3.73) is obviously replaced with (—1)™.
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5. Conclusions

We have generalized the recently defined covariant star product of differential forms
on a symplectic manifold® to tensor-valued differential forms and consequently to
tensor fields of any type. This generalization does not require any new constraints
on the connections. Possible applications of the star product to gravity and gauge
theory have been discussed, considering the rather strict constraints the connections
have to satisfy. Further study of both of these applications is required.

Then we proposed a covariant star product of tensor fields on a Poisson manifold
with a linear connection that has less constraints than in the first case. Thus this
star product could be a more viable option for theories of gravity.

We also discussed the possibility to relax the torsion-freeness condition of the
linear connection of the universal covariant star product of functions defined on
a Poisson manifold in Ref. 6. It was found that this requires one to impose some
constraints on both the torsion and the curvature, namely (3.7) in our case.

Finally, a remark about the Poisson algebra of tensor fields is in order. A Pois-
son algebra consists of a commutative associative algebra endowed with a Poisson
bracket. A graded-commutative associative algebra — like the algebra of differen-
tial forms — can be turned into a graded Poisson algebra by introducing a graded
Poisson bracket. However, the algebra of tensor fields is neither commutative nor
graded-commutative. This is the reason why the Poisson structure of tensor fields
(4.14)—(4.18) was defined for the components of the tensors, which are of course
commutative functions. This raises the question: could a Poisson structure for ten-
sor fields be defined in some other way compared to the definition given above?
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