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A covariant Poisson bracket and an associated covariant star product in the sense of
deformation quantization are defined on the algebra of tensor-valued differential forms
on a symplectic manifold, as a generalization of similar structures that were recently
defined on the algebra of (scalar-valued) differential forms. A covariant star product of
arbitrary smooth tensor fields is obtained as a special case. Finally, we study covariant
star products on a more general Poisson manifold with a linear connection, first for
smooth functions and then for smooth tensor fields of any type. Some observations on
possible applications of the covariant star products to gravity and gauge theory are made.
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1. Introduction

Due to several convincing arguments arising from the quantum theory and the Ein-

stein’s theory of gravity, it is generally believed that the manifold structure of space–

time does not exist at distances equal and shorter than the Planck length and that

the correct description of space–time should be somehow noncommutative. Field

theories defined on noncommutative space–times have been extensively studied dur-

ing the last decades (for reviews see Refs. 1 and 2). The canonically noncommutative

space–time structure, generated by the coordinate commutation relations

[x̂µ, x̂ν ] = iθµν (1.1)

with a constant antisymmetric θµν , and its Moyal star product have received most

attention. Also the Lie algebraic structure, the quantum space structures and the

symplectic and Poisson manifolds have been considered as possible descriptions of

noncommutative space–time. We consider the last two cases where the θµν(x̂) is a

generally x̂-dependent bivector field.
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The main effects of the noncommutativity of space–time on the theories of

particle physics, most notably the Standard Model, have been extensively studied

and by now some of their features are well understood. Understanding gravity on

noncommutative space–times has proven to be a challenging effort. This is due

to the difficulty to accommodate both the gravitational and the noncommutative

structures of space–time — the classical geometrical large-distance structure and

the noncommutativity of coordinates at short distances.

One of the standing issues of noncommutative gravity is the general covariance of

the star product under space–time diffeomorphisms. The diffeomorphism-covariance

of a star product can be achieved in many ways. One way is to construct a star pro-

duct that is by definition covariant under conventional space–time diffeomorphisms.

This is the approach we shall consider in this work. More specifically we consider

space–time as a symplectic manifold — later as a more general Poisson manifold —

and seek to quantize such a space–time by introducing a (noncommutative) co-

variant star product. This is done in the light of two recent approaches3–5 to the

quantization of a symplectic space–time manifold. We construct a diffeomorphism-

covariant Poisson bracket and an associated star product of tensor-valued differen-

tial forms on such space–time. A covariant star product of tensor fields is obtained

as the special case of tensor-valued zero-forms. Possible applications of the obtained

covariant star product to gravity and gauge theory are discussed.

Deformation quantization of more general Poisson manifolds with a torsion-free

linear connection has also been studied recently6 and a universal covariant star

product of functions has been constructed. We define a covariant Poisson bracket

on a smooth manifold with a linear connection and propose an associated covariant

star product of tensor fields on the Poisson manifold. The constraints that the

connection is imposed to satisfy by these structures are studied. The possibility to

relax the torsion-freeness condition of Ref. 6 in the case of a star product of functions

is also considered. For a recent review of deformation quantization see Ref. 7.

2. On Covariant Derivative of Tensors and Differential Forms

The intent of this section is to review the concepts of connection and covariant

derivative on smooth manifolds, providing some of the definitions and results that

are used in the following sections, and to discuss some misunderstandings found in

recent literature regarding these things.

2.1. Connections and covariant derivatives

We consider a smooth manifold M and a linear connection on the tensor bundle

T (M) of M and the associated covariant derivative.a The linear connection is given

aWe could equally well talk about an affine connection instead of a linear connection. See Ref. 8,
Chap. 3, Theorem 3.3, for their relation.
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by a covariant derivative ∇ that is a linear map

∇ : T k,l(M) → T k,l+1(M) , (2.1)

where T k,l(M) is the vector space of smooth tensor fields of type (k, l) on M , i.e.

the space of smooth sections of the tensor product bundle ⊗k TM ⊗l T ∗M

T k,l(M) = Γ(⊗k TM ⊗l T ∗M) , (2.2)

where TM and T ∗M are the tangent bundle of M and the cotangent bundle of M ,

respectively, ⊗k TM denotes the kth tensor power of TM and Γ denotes the space

of all smooth sections of the argument fiber bundle. We shall denote the algebra of

tensor fields on M by

T (M) =
∞
⊕

k,l=0

T k,l(M) . (2.3)

The covariant derivative ∇X along a vector field X ∈ X (M) = Γ(TM) is a linear

derivation that preserves the type of tensors

∇X : T k,l(M) → T k,l(M) (2.4)

and it is related to the connection (2.1) by

(∇XA)(α1, . . . , αk, X1, . . . , Xl) = (∇A)(X ;α1, . . . , αk, X1, . . . , Xl) , (2.5)

where the vector field X in the covariant derivative ∇XA of A ∈ T k,l(M) takes the

place of the additional vector argument in ∇A ∈ T k,l+1(M) provided by (2.1) (see

Ref. 8, Chap. 3, Sec. 2).b This together with the requirements that ∇X commutes

with all contractions and acts on functions as the vector X (directional derivative)

∇Xf = X(f) , f ∈ F (M) = Γ(M × R) (2.6)

ensures that ∇ satisfies the properties of a covariant differentiation on T (M).c The

covariant derivative (2.5) can be written

(∇XA)(α1, . . . , αk, X1, . . . , Xl)

= ∇X(A(α1, . . . , αk, X1, . . . , Xl))

−

k
∑

i=1

A(α1, . . . ,∇Xαi, . . . , αk, X1, . . . , Xl)

−
l
∑

i=1

A(α1, . . . , αk, X1, . . . ,∇XXi, . . . , Xl) , (2.7)

bThe additional argument X in the (2.5) is the first one, because we want to have the argu-
ments of ∇A in the same order as the corresponding tensor indices in the component notation
∇ρA

µ1···µk
ν1···νl

.
cThe linearity of a tensor ∇A in its arguments guarantees that ∇fX = f∇X and ∇X+Y =
∇X + ∇Y , for arbitrary f ∈ F (M) and X, Y ∈ X (M).
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which follows from ∇X being a derivation that commutes with all contractions

(see Ref. 8, Chap. 3, Proposition 2.10). Thus the second covariant derivative of

A ∈ T k,l(M) is

(∇2A)(X ;Y ; ) = ∇X(∇Y A) −∇∇XY A , (2.8)

where each term is in T k,l(M) (see Ref. 8, Chap. 3, Proposition 2.12). The nth

covariant derivative can be obtained inductively.

2.1.1. Differential forms

The vector space of differential forms of degree p on M is the space of smooth

sections of the pth exterior power of the cotangent bundle,

Ωp(M) = Γ(∧pT ∗M) . (2.9)

The algebra of differential forms on M — with the exterior product ∧ as multipli-

cation — is the direct sum of the spaces of p-forms of all degrees p and it shall be

denoted by

Ω(M) =

dimM
⊕

p=0

Ωp(M) . (2.10)

The covariant derivative of a differential form on M is defined similarly as for any

other tensor field on M (see above). However, the algebra Ω(M) is not closed under

a covariant differentiation ∇. For example, restricting the domain of ∇ to Ωp(M)

we have

∇ : Γ(∧pT ∗M) → Γ(T ∗M ⊗ ∧pT ∗M) , (2.11)

where the range is the space of covector-valued p-forms. Thus we have to consider

tensor-valued differential forms.

The vector space of (k, l)-tensor-valued differential forms of degree p shall be

denoted by

Ωp(M,T k,l) = Γ(⊗k TM ⊗l T ∗M ⊗ ∧pT ∗M) , (2.12)

where T k,l abbreviates the tensor product bundle ⊗k TM ⊗l T ∗M .d Note that

Ω0(M,T k,l) = T k,l(M) and Ωp(M,T 0,0) = Ωp(M). The algebra of all tensor-valued

differential forms is defined as

Ω(M,T ) =

dimM
⊕

p=0

∞
⊕

k,l=0

Ωp(M,T k,l) , (2.13)

with the multiplication given by the generalized exterior product

∧ : Ωp(M,T k,l) × Ωq(M,Tm,n) → Ωp+q(M,T k,l ⊗ Tm,n) = Ωp+q(M,T k+m,l+n) .

(2.14)

dWe shall also refer to elements of Ωp(M, T k,l) as (k, l)-tensor-valued p-forms.
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The covariant derivative ∇ maps (k, l)-tensor-valued p-forms to (k, l + 1)-tensor-

valued p-forms

∇ : Ωp(M,T k,l) → Ωp(M,T k,l+1) . (2.15)

We also define an exterior covariant derivative D that is the natural extension of

the exterior derivative d: Ωp(M) → Ωp+1(M) and ∇ on Ω(M,T ). It maps tensorial

p-forms to tensorial (p+ 1)-forms of the same type

D : Ωp(M,T k,l) → Ωp+1(M,T k,l) , (2.16)

which we shall discuss more shortly (see also Ref. 8, Chap. 2, Sec. 5).

2.1.2. Local smooth frames, the connection one-form, the torsion and the

curvature two-forms and the exterior covariant derivative

A connection one-form ωab of ∇ is associated to a local smooth frame {ea}
dimM
a=1 of

the tangent bundle TM over an open set U of M over which TM is trivial. It is

defined by

∇eb = ωab ⊗ ea . (2.17)

The connection ∇ on TM (restricted over U) is given by

∇φ = (dφa + ωabφ
b) ⊗ ea , (2.18)

where φ = φaea ∈ Γ(TM) over U and d is the exterior derivative. On the cotangent

bundle T ∗M , the dual bundle of TM , we can setup a local smooth frame {ea}dimM
a=1

over U that is dual to the frame of TM , 〈ea, eb〉 = δab . Thus the connection on T ∗M

over U is given by ∇ea = −ωab ⊗ eb and

∇ψ = (dψb − ωabψa) ⊗ eb , (2.19)

where ψ = ψae
a ∈ Γ(T ∗M). Extension to the tensor bundle T (M) is

straightforward,e e.g. for A = Aa1···ak

b1···bl
ea1

⊗ · · · ⊗ eak
⊗ eb1 ⊗ · · · ⊗ ebl ∈

Γ(⊗k TM ⊗l T ∗M) over U we have

∇A =

(

dAa1···ak

b1···bl
+

k
∑

i=1

ωai
cA

a1···ai−1cai+1···ak

b1···bl

−

l
∑

i=1

ωcbi
Aa1···ak

b1···bi−1cbi+1···bl

)

⊗ ea1
⊗ · · · ⊗ eak

⊗ eb1 ⊗ · · · ⊗ ebl . (2.20)

All the other local smooth frames of T ∗M and TM can be obtained through

local linear transformations

e′a = Λabe
b , e′a = eb(Λ

−1)ba , (2.21)

e∇ has the standard Leibniz rule, ∇(A ⊗ B) = ∇A ⊗ B + A ⊗∇B, and similarly for the exterior
product, ∇(A ∧ B) = ∇A ∧ B + A ∧ ∇B.
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where in the general case Λ ∈ GL(TpM) ∼= GL(dimM,R), but additional structures

on M can restrict the local symmetry group to a subgroup of GL(dimM,R). The

components of tensor fields transform as

A′a1···ak

b1···bl
= Λa1

c1
· · ·Λak

ck
Ac1···ck

d1···dl
(Λ−1)d1b1 · · · (Λ

−1)dl

bl
(2.22)

and the connection one-form has the transformation rule

ω′a
b

= Λacω
c
d(Λ

−1)db − dΛac(Λ
−1)cb . (2.23)

For tensor-valued differential forms, we use notation where the tensor indices are

visible and the antisymmetric form components are hidden, e.g. A ∈ Ωp(M,T k,l) is

written

Aa1···ak

b1···bl
=

1

p!
Aa1···ak

b1···blc1···cp
ec1 ∧ · · · ∧ ecp . (2.24)

The torsion two-form T a and the curvature two-form Rab of the connection are

defined by

T a = Dea = dea + ωab ∧ e
b , (2.25)

Rab = dωab + ωac ∧ ω
c
b , (2.26)

where D is the exterior covariant derivative (2.16) that is defined for a tensor-valued

differential form (2.24) as the linear map

DAa1···ak

b1···bl
= dAa1···ak

b1···bl
+

k
∑

i=1

ωai
c ∧ A

a1···ai−1cai+1···ak

b1···bl

−

l
∑

i=1

ωcbi
∧ Aa1···ak

b1···bi−1cbi+1···bl
. (2.27)

Unlike the exterior derivative dAa1···ak

b1···bl
, the exterior covariant derivative (2.27)

has the correct tensor transformation rule (2.22) under local frame transformations

(2.21). The second exterior covariant derivative consist of contractions with the

curvature two-form (2.26)

D2Aa1···ak

b1···bl
=

k
∑

i=1

Rai
c ∧ A

a1···ai−1cai+1···ak

b1···bl

−
l
∑

i=1

Rcbi
∧ Aa1···ak

b1···bi−1cbi+1···bl
. (2.28)

Taking exterior covariant derivatives of (2.25) and (2.26) yields the Bianchi

identities

DT a = Rab ∧ e
b , (2.29)

DRab = 0 . (2.30)
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2.1.3. Local coordinates

Introducing a local coordinate system {xµ}dimM
µ=1 on the open set U of M enables

us to use the full component notation of tensor calculus — the formalism conven-

tionally used in physics. It enables us to locally write the covariant derivative (2.20)

of a tensor field A ∈ T k,l(M) along the basis vector ∂
∂xµ as

∇µA
a1···ak

b1···bl
= ∂µA

a1···ak

b1···bl
+

k
∑

i=1

ω ai
µ cA

a1···ai−1cai+1···ak

b1···bl

−

l
∑

i=1

ω
c
µ bi

Aa1···ak

b1···bi−1cbi+1···bl
, (2.31)

where ω a
µ b dxµ = ωab, ∇µeb = ω

a
µ bea and ∇µe

a = −ω a
µ be

b. This is the local form

of (2.7).

Since the fibers of TM and T ∗M over each p ∈ M are the tangent space TpM

and the cotangent space T ∗
pM of M at p respectively, the local frames of TM and

T ∗M over each p ∈M are smoothly related to the coordinate bases ∂
∂xµ and dxµ of

TpM and T ∗
pM respectively through (orientation preserving) linear transformations

ea = e µ
a

∂

∂xµ
, ea = eaµ dxµ , (2.32)

where e µ
a as a matrix is a GL+(dimM,R)-valued smooth function on M and eaµ

is the inverse of e µ
a ; e µ

a ebµ = δba, e
µ
a eaν = δµν .f The functions e µ

a and eaµ enable

us to transform components of tensors between the coordinate and noncoordinate

bases.

A (k, l)-tensor-valued p-form (2.24) behaves as a (k, l+p)-tensor field under the

covariant derivative (2.20)

∇µA
a1···ak

b1···bl
=

1

p!

(

∇µA
a1···ak

b1···blc1···cp

)

ec1 ∧ · · · ∧ ecp , (2.33)

where the expression inside the parenthesis is given by (2.31).

2.1.4. Using a coordinate basis for T (M)

We can even choose the local frames of TM and T ∗M to coincide with a coordinate

basis of tangent spaces, ea = ∂
∂xa , and cotangent spaces, ea = dxa. When this choice

is made, we conventionally choose to work with one kind of indices, a → µ etc.,

and rename the connection one-form ωab → Γρν and the connection coefficients

ω
a
µ b → Γρµν . The covariant derivative is now defined by

∇µ : T k,l(M) → T k,l+1(M) , (2.34)

fGL+(dim M, R) = {g ∈ GL(dim M, R) : det g > 0}.
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∇ρA
µ1···µk

ν1···νl
= ∂µA

µ1···µk
ν1···νl

+

k
∑

i=1

Γµi
ρσA

µ1···µi−1σµi+1···µk
ν1···νl

−

l
∑

i=1

Γσρνi
Aµ1···µk

ν1···νi−1σνi+1···νl
. (2.35)

General coordinate transformations, x → x′ = x′(x), are a specific class of frame

transformations (2.21) with the local transformation matrix

Λµν =
∂x′µ

∂xν
. (2.36)

2.2. Criticism

It is important to understand that the algebra of differential forms Ω(M) is not

closed under the covariant derivation ∇ (equivalently under ∇µ in a coordinate

basis). The covariant derivative ∇ω of a p-form ω is a smooth section of the product

bundle T ∗M ⊗ ∧pT ∗M . In other words ∇µω is a (0, 1)-tensor-valued p-form. This

is not acknowledged in Ref. 4, where the covariant derivative ∇µω of a p-form ω

along the basis vector eµ is considered to be a p-form, which leads to some serious

problems.

Differential forms are frame-independent objects that exist independent of any

coordinate system. ∇µω is clearly a frame-dependent object that transforms as a

component of a covector under general coordinate transformations.

The convention “∇µ acts nontrivially only on the bases eµ and dxµ” in Ref. 4 is

inconsistently executed. The property (2.7) is violated, when some of the contrac-

tions are differentiated with ∇µ. As an example we consider the covariant derivative

of the contraction of a bivector θµν and two covariant derivatives ∇µα and ∇νβ of

differential forms α and β,

∇µ(θ
νρ∇να∇ρβ) = (∇µθ

νρ)∇να∇ρβ + θνρ(∇µ∇να∇ρβ + ∇να∇µ∇ρβ) . (2.37)

Clearly we cannot write ∇µθ
νρ = ∂µθ

νρ, as is done in similar calculations of Ref. 4

(see Ref. 4, Apps. B.5 and C for these calculations), without trivializing the con-

nection. The tensorial nature of R̃µν is correctly recognized in these calculations

(see also Ref. 4, App. A), but the bivector θµν is treated as a function.

Moreover, in Ref. 4 the second covariant derivatives ∇µ∇να of a p-form α are

incorrectly calculated, so that the commutator of second covariant derivatives of α,

[∇µ,∇ν ]αρ1···ρp
= −T σµν∇σαρ1···ρp

−

p
∑

i=1

Rσρiµν
αρ1···ρi−1σρi+1···ρp

, (2.38)

contains only the curvature contributions, but not the torsion contribution.g This

is an implication of the failure to fully recognize the additional argument vector

provided by the covariant derivative.

gIf one wants to use the above mentioned convention for ∇µ, one should calculate the second
covariant derivative of α as ∇µ(dxν ⊗ (∇να)).
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Due to these problem in the covariant derivative of Ref. 4, the star product pro-

posed in Ref. 4 is neither truly associative nor covariant. The associativity property

of the star product is found to be satisfied only because the covariant derivatives

in the double Poisson brackets like {{α, β}, γ} are calculated incorrectly.

These problems with the covariant derivative found in Ref. 4 have been recently

corrected in Ref. 3, where the formalism of Ref. 4 is reconsidered by using correct

definitions. In Ref. 3 the covariant derivative ∇µ is correctly taken on tensor fields

of any type and one does not try to extend the algebra of differential forms by the

covariant derivatives.

3. Generalization of the Poisson Structure and the Star Product

to the Algebra of Tensor-Valued Differential Forms on a

Symplectic Manifold

3.1. Poisson algebra of differential forms

Consider the graded differential Poisson algebra of differential forms on a symplectic

manifold M studied in Refs. 9, 4, 3, 10.

The Poisson bracket of functions f , g ∈ F (M) is defined by

{f, g} = θ(df, dg) = θµν∂µf∂νg . (3.1)

The Jacobi identity of the Poisson bracket requires that the Poisson bivector satisfies
∑

(µ,ν,ρ)

θµσ∂σθ
νρ = 0 , (3.2)

where the sum is over cyclic permutations. The Poisson bivector θ is assumed to

be nondegenerate, so that it has an inverse ω that satisfies ωµνθ
νρ = δρµ. It can

be shown that (3.2) is equivalent to ω being a closed form, dω = 0.9 The closed

nondegenerate two-form ω on M is called the symplectic form.

The Poisson bracket of a function and a differential form α ∈ Ω(M) (of degree

one at first and then of any degree)

{f, α} = ∇Xf
α = θµν∂µf∇να (3.3)

is a covariant derivation of α and therefore defines a linear connection on M . By

using the connection coefficients Γρµν we can define two connections ∇ and ∇̃ with

the connection one-forms

Γρν = Γρµν dxµ and Γ̃ρµ = Γρµν dxν (3.4)

respectively, which are different when the torsion (2.25),

T ρ = Γρν ∧ dxν = dxµ ∧ Γ̃ρµ , (3.5)

does not vanish, T ρµν = 2Γρ[µν] 6= 0. The Leibniz rule of the Poisson bracket,

d{f, g} = {df, g} + {f, dg}, implies that the connection ∇̃ satisfies

∇̃µθ
νρ = ∂µθ

νρ + Γνσµθ
σρ + Γρσµθ

νσ = 0 , (3.6)
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i.e. ∇̃ is a symplectic connection.h Together (3.2) and (3.6) imply two covariant

versions of the Jacobi identity
∑

(µ,ν,ρ)

θµσ∇σθ
νρ = 0 and

∑

(µ,ν,ρ)

θµσθνλT
ρ
σλ = 0 . (3.7)

Imposing either ∇µθ
νρ = 0 or T ρµν = 0 would lead to a single torsion-free symplectic

connection ∇ = ∇̃, but this is not necessary. The curvature two-forms (2.26) of ∇

and ∇̃ are given by

Rµν = dΓµν + Γµρ ∧ Γρν and R̃µν = dΓ̃µν + Γ̃µρ ∧ Γ̃ρν (3.8)

respectively, and we use the Poisson bivector θµν to raise their lower index, e.g.

R̃µν = θµρR̃νρ . (3.9)

The curvature two-form of a symplectic connection ∇̃ is symmetric R̃µν = R̃νµ.i

Note that, unlike ∇̃µ, the covariant derivative ∇µ does not commute with the raising

of indices with θµν , because ∇ is not symplectic. Indeed (3.6) implies

∇µθ
νρ = T νµσθ

σρ + T ρµσθ
νσ . (3.10)

The unique Poisson bracket of differential forms α, β ∈ Ω(M) of nonzero degrees

that is consistent with the graded differential Poisson algebra has been defined in

Refs. 4 and 3,

{α, β} = θµν∇µα ∧ ∇νβ + (−1)deg(α)R̃µν ∧ iµα ∧ iνβ , (3.11)

where deg(α) denotes the degree of α and iµα is the interior product of α with the

µth basis vector. Covariant derivatives of contractions like (2.37), including multiple

covariant derivatives, are present when several Poisson brackets (3.11) are taken,

e.g. {α, {β, γ}}. In order for the Poisson bracket (3.11) to satisfy the graded Jacobi

identity the connections have to satisfy the following additional constraints:

Rµνρσ = 0 , (3.12)

∇λR̃
µν
ρσ = 0 , (3.13)

∑

(µ,ν,ρ)

R̃µσ ∧ iσR̃
νρ = 0 , (3.14)

where the last constraint (3.14) is, however, implied by the two former constraints,

the Leibniz rule and the Jacobi identity (3.2).10,3,j

hWe call a connection ∇ symplectic if ωµν or equivalently θµν is covariantly constant under the
covariant derivative.
i(3.6) implies: 0 = [∇̃ρ, ∇̃σ]θµν = −T λ

ρσ
∇̃λθµν + R̃

µ
λρσ

θλν + R̃ν
λρσ

θµλ = −R̃
νµ

ρσ + R̃
µν

ρσ.
j(3.12) is implied by the Jacobi identity for two functions and one one-form and (3.13) by the
Jacobi identity for one function and two one-forms.9
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3.2. Poisson algebra of tensor-valued differential forms

We want to extend the graded differential Poisson algebra of differential forms by the

covariant derivation ∇. This is achieved by generalizing the Poisson bracket (3.11)

for tensor-valued differential forms. In other words, the Poisson bracket should be

generalized to accept forms whose components have additional tensor indices. Then

Poisson brackets like {∇µα, β} will be naturally defined. This would enable us to

define the related star product for all tensor-valued differential forms, which enlarges

the applicability of the formalism. The curvature two-forms Rµν and R̃µν and the

torsion two-form T µ are examples of such forms. Such star product could indeed be

useful for defining noncommutative deformations of gravitational theories, whose

actions involve the curvature two-form(s). Next we propose such a formalism that

generalizes the approach of Refs. 4 and 3, and also corrects the misunderstandings

found in Ref. 4.

3.2.1. The algebra of tensor-valued differential forms

We choose to work in a local coordinate system {xµ}dimM
µ=1 of M . This approach

can, however, be repeated by using any local smooth frame of Ω(M,T ), with the

frame transformations (2.21) defined to be compatible with the symplectic structure

of M .

The exterior product (2.14) of two tensor-valued differential forms A ∈

Ωp(M,T k,l) and B ∈ Ωq(M,Tm,n),

Aµ1···µk
ν1···νl

=
1

p!
Aµ1···µk

ν1···νlρ1···ρp
dxρ1 ∧ · · · ∧ dxρp , (3.15)

Bµ1···µm
ν1···νn

=
1

q!
Bµ1···µm

ν1···νnρ1···ρq
dxρ1 ∧ · · · ∧ dxρq , (3.16)

is a tensor-valued differential form A ∧ B ∈ Ωp+q(M,T k+m,l+n) defined by

(A ∧ B)
µ1···µk+m

ν1···νl+n

=
1

(p+ q)!
(A ∧ B)

µ1···µk+m
ν1···νl+nρ1···ρp+q dxρ1 ∧ · · · ∧ dxρp+q

=
1

p!q!
Aµ1 ···µk

ν1···νlρ1···ρp
B
µk+1···µk+m

νl+1···νl+nρp+1···ρp+q
dxρ1 ∧ · · · ∧ dxρp+q

= Aµ1···µk
ν1···νl

∧ B
µk+1···µk+m

νl+1···νl+n
. (3.17)

The exterior product (3.17) satisfies the following properties for arbitrary tensor-

valued differential forms A, B and C:

(i) A ∧ B = 0 if deg(A) + deg(B) > dim(M).

(ii) Degree:

deg(A ∧ B) = deg(A) + deg(B) . (3.18)
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(iii) Symmetry:

Aµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

= (−1)deg(A) deg(B)Bρ1···ρm
σ1···σn

∧ Aµ1···µk
ν1···νl

. (3.19)

(iv) Associativity: (A ∧ B) ∧ C = A ∧ (B ∧ C).

It is necessary to write Aµ1···µk
ν1···νl

instead of just A in the exterior product (3.17)

when the order of the factors is changeable as in (3.19), because the tensor product

is generally noncommutative, A ⊗ B 6= B ⊗ A. One can write (3.19) equivalently

as A ∧ B = (−1)deg(A) deg(B)(B ∧ A) ◦ σ(k,l), where the map σ(k,l) moves the first

k covector arguments and the first l vector arguments over the rest of the argu-

ments of each type, σ(k,l)(α1, . . . , αk+m, X1, . . . , Xl+n) = (αk+1, . . . , αk+m, α1, . . . ,

αk, Xl+1, . . . , Xl+n, X1, . . . , Xl). We, however, prefer to keep track of the order of

the arguments with the tensorial indices.

The interior product of tensor-valued differential forms can be defined so that

it recognizes only the form part of tensor-valued differential forms. The interior

product of A ∈ Ωp(M,T k,l) with the coordinate basis vector ∂
∂xµ is the map

iµ : Ωp(M,T k,l) → Ωp−1(M,T k,l+1) ,

iρA
µ1···µk

ν1···νl
=

1

(p− 1)!
A
µ1···µk

ν1···νlρσ2 ···σp
dxσ2 ∧ · · · ∧ dxσp .

(3.20)

It satisfies

iρ
(

Aµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

)

= iρA
µ1···µk

ν1···νl
∧ Bρ1···ρm

σ1···σn
+ (−1)deg(A)Aµ1···µk

ν1···νl
∧ iρB

ρ1···ρm
σ1···σn

(3.21)

and iµiνA = −iνiµA. Zero-forms vanish under the interior product iµ.

The exterior covariant derivative D (2.16) is used instead of the exterior deriva-

tive, because the latter maps tensorial differential forms to nontensorial ones. The

exterior covariant derivative (2.27) is now written

DAµ1···µk
ν1···νl

= dAµ1···µk
ν1···νl

+

k
∑

i=1

Γµi
ρ ∧A

µ1···µi−1ρµi+1···µk
ν1···νl

−

l
∑

i=1

Γρνi
∧ Aµ1···µk

ν1···νi−1ρνi+1···νl
, (3.22)

where the exterior derivative d is given by

dAµ1···µk
ν1···νl

=
1

p!
∂σA

µ1···µk
ν1···νlρ1···ρp

dxσ ∧ dxρ1 ∧ · · · ∧ dxρp . (3.23)
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D satisfies the same Leibniz rule as d,

D
(

Aµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

)

= DAµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

+ (−1)deg(A)Aµ1···µk
ν1···νl

∧DBρ1···ρm
σ1···σn

.

(3.24)

The exterior covariant derivative D̃ of the other connection is defined analogously

by using the connection one-form Γ̃µν instead of Γµν .

A connection also provides the covariant derivative on Ω(M,T )

∇µ : Ωp(M,T k,l) → Ωp(M,T k,l+1) (3.25)

that is defined in (2.31) and (2.33) (see also (2.34) and (2.35) for the present case

of a coordinate basis). The covariant derivative of a tensor-valued differential form

can be written in a compact form as

∇ρA
µ1···µk

ν1···νl
= ∂ρA

µ1···µk
ν1···νl

+

k
∑

i=1

Γµi
ρσA

µ1···µi−1σµi+1 ···µk
ν1···νl

−

l
∑

i=1

Γσρνi
Aµ1···µk

ν1···νi−1σνi+1···νl
− Γ̃σρ ∧ iσA

µ1···µk
ν1···νl

, (3.26)

where we denote

∂σA
µ1···µk

ν1···νl
=

1

p!
∂σA

µ1···µk
ν1···νlρ1···ρp

dxρ1 ∧ · · · ∧ dxρp . (3.27)

Definition for the other covariant derivative ∇̃µ is analogous (replace Γρµν with Γρνµ
and Γ̃ρµ with Γρµ). When the second covariant derivative ∇ρ∇σA

µ1···µk
ν1···νl

is taken,

the subscript σ is treated as a covariant tensor index. The commutator of second

covariant derivatives reads

[∇ρ,∇σ ]A
µ1···µk

ν1···νl

= −T λρσ∇λA
µ1···µk

ν1···νl
+

k
∑

i=1

R
µi

λρσA
µ1···µi−1λµi+1···µk

ν1···νl

−

l
∑

i=1

Rλνiρσ
A
µ1···µk

ν1···νi−1λνi+1···νl
−Rλτρσ dxτ ∧ iλA

µ1···µk
ν1···νl

. (3.28)

The covariant derivative has the Leibniz rule

∇λ

(

Aµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

)

= ∇λA
µ1···µk

ν1···νl
∧ Bρ1···ρm

σ1···σn
+Aµ1···µk

ν1···νl
∧ ∇λB

ρ1···ρm
σ1···σn

. (3.29)

We can find a useful relation for D and ∇ρ by multiplying (3.26) with dxρ∧

from left

dxρ ∧∇ρA
µ1···µk

ν1···νl
= DAµ1···µk

ν1···νl
− T ρ ∧ iρA

µ1···µk
ν1···νl

. (3.30)
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We can even write it as a local operator identity

D = dxµ ∧ ∇µ + T µ ∧ iµ . (3.31)

Once again a similar relation holds for the other connection

D̃ = dxµ ∧ ∇̃µ − T µ ∧ iµ . (3.32)

We shall occasionally refer to both ∇ and D as the connection — similarly for ∇̃

and D̃.

3.2.2. The Poisson bracket

Now we can extend the Poisson bracket (3.11) for tensor-valued differential forms

{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

= θλτ∇λA
µ1···µk

ν1···νl
∧∇τB

ρ1···ρm
σ1···σn

+ (−1)deg(A)R̃λτ ∧ iλA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

. (3.33)

If either Aµ1···µk
ν1···νl

or Bρ1···ρm
σ1···σn (or both) is a tensor field of zero form

degree, the Poisson bracket is defined by

{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

= θλτ∇λA
µ1···µk

ν1···νl
∇τB

ρ1···ρm
σ1···σn

, (3.34)

which is also consistent with (3.1) and (3.3) (we essentially consider that the interior

product of a zero-form is zero).

The Poisson bracket (3.33) of tensor-valued differential forms satisfies the fol-

lowing properties of the graded differential Poisson algebra. For A ∈ Ωp(M,T k,l)

and B ∈ Ωq(M,Tm,n) and C ∈ Ωr(M,T i,j) we have:

Bracket degree

deg
({

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

})

= deg(A) + deg(B) , (3.35)

which is implied by the following properties. The covariant derivative (3.25) does

not change the degree of tensor-valued differential forms, deg(∇µA) = deg(A). The

interior product (3.20) reduces the degree by one, deg(iµA) = deg(A) − 1. The

exterior product (3.17) has the degree (3.18).

Graded symmetry

{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

= (−1)deg(A) deg(B)+1
{

Bρ1···ρm
σ1···σn

, Aµ1···µk
ν1···νl

}

, (3.36)

follows from the symmetry property of the exterior product (3.19) and from the

antisymmetry of θµν and the symmetry of R̃µν under µ↔ ν.
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Graded product

{

Aµ1···µk
ν1···νl

∧Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

}

= Aµ1···µk
ν1···νl

∧
{

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

}

+ (−1)deg(B) deg(C)
{

Aµ1···µk
ν1···νl

, Cλ1···λi

τ1···τj

}

∧ Bρ1···ρm
σ1···σn

(3.37)

follows from the Leibniz rule for ∇µ (3.29) and the similar property for iµ (3.21)

and the symmetry property of the exterior product (3.19).

Leibniz rule

D
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

=
{

DAµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

+ (−1)deg(A)
{

Aµ1···µk
ν1···νl

, DBρ1···ρm
σ1···σn

}

.

(3.38)

By applying the Leibniz rule (3.24) to the left-hand side of (3.38), we obtain

D
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

= Dθλτ ∧ ∇λA
µ1···µk

ν1···νl
∧ ∇τB

ρ1···ρm
σ1···σn

+ θλτ
(

D∇λA
µ1···µk

ν1···νl
∧∇τB

ρ1···ρm
σ1···σn

+ (−1)deg(A)∇λA
µ1···µk

ν1···νl
∧D∇τB

ρ1···ρm
σ1···σn

)

+ (−1)deg(A)DR̃λτ ∧ iλA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

+ (−1)deg(A)R̃λτ ∧
(

DiλA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

+ (−1)deg(A)−1iλA
µ1···µk

ν1···νl
∧DiτB

ρ1···ρm
σ1···σn

)

. (3.39)

Then we use (3.31) to calculate the relation of D∇λA
µ1···µk

ν1···νl
and

∇λDA
µ1···µk

ν1···νl
. First we calculate

D∇µ = dxν ∧ ∇ν∇µ + T ν ∧ iν∇µ (3.40)

and

∇µD = dxν ∧ ∇µ∇ν + ∇µT
ν ∧ iν + T ν ∧ ∇µiν (3.41)

and find out that ∇µ and iν commute (follows from (3.20) and (3.26) by direct

calculation, recalling iνiµ = −iµiν)

iν∇µA
µ1···µk

ν1···νl
= ∇µiνA

µ1···µk
ν1···νl

, (3.42)
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which then together imply

D∇µ = ∇µD + dxν ∧ [∇ν ,∇µ] −∇µT
ν ∧ iν . (3.43)

Thus we obtain the relation

D∇λA
µ1···µk

ν1···νl
= ∇λDA

µ1···µk
ν1···νl

+ dxρ ∧ [∇ρ,∇λ]A
µ1···µk

ν1···νl

−∇λT
ρ ∧ iρA

µ1···µk
ν1···νl

. (3.44)

This result can as well be derived directly from the definitions (3.22) and (3.26),

but it is a lengthy calculation. By using the definitions (3.22) and (3.20) we obtain

the relation of DiλA
µ1···µk

ν1···νl
and iλDA

µ1···µk
ν1···νl

,

(Diλ + iλD)Aµ1···µk
ν1···νl

= ∇λA
µ1···µk

ν1···νl
+ iλT

ρ ∧ iρA
µ1···µk

ν1···νl
, (3.45)

where we have also used (3.23), (3.26) and iλT
ρ = Γ̃ρλ−Γρλ. Introducing the results

(3.44) and (3.45) into (3.39) yields

D
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

=
{

DAµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

+ (−1)deg(A)
{

Aµ1···µk
ν1···νl

, DBρ1···ρm
σ1···σn

}

+Dθλτ ∧ ∇λA
µ1 ···µk

ν1···νl
∧ ∇τB

ρ1···ρm
σ1···σn

+ (−1)deg(A)
(

DR̃λτ + R̃φτ ∧ iφT
λ + R̃λφ ∧ iφT

τ
)

∧ iλA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

+ θφτ
(

R̃λφ −∇φT
λ
)

∧ iλA
µ1···µk

ν1···νl
∧ ∇τB

ρ1···ρm
σ1···σn

+ (−1)deg(A)θλφ
(

R̃τφ −∇φT
τ
)

∧ ∇λA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

+ θλτ dxφ ∧
(

[∇φ,∇λ]A
µ1···µk

ν1···νl
∧ ∇τB

ρ1···ρm
σ1···σn

+ ∇λA
µ1···µk

ν1···νl
∧ [∇φ,∇τ ]B

ρ1···ρm
σ1···σn

)

, (3.46)

where some regrouping and simplifications have been done. For further simplifica-

tion, we calculate

DR̃µν + R̃ρν ∧ iρT
µ + R̃µρ ∧ iρT

ν

= dR̃µν + Γ̃µρ ∧ R̃ρν + Γ̃νρ ∧ R̃
µρ = D̃R̃µν = D̃(θµρR̃νρ) = D̃θµρ ∧ R̃νρ , (3.47)

where (2.30) has been used in the last equality. As a final step we introduce (3.28)

to the right-hand side of (3.46) and combine the contributions of the first and the

last term of (3.28) to the third, fifth and sixth term of (3.46). In the third term of

the resulting expression, we calculate

Dθµν + θρν iρT
µ + θµρiρT

ν = D̃θµν . (3.48)
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Thus we obtain the result

D
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

=
{

DAµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

+ (−1)deg(A)
{

Aµ1···µk
ν1···νl

, DBρ1···ρm
σ1···σn

}

+ D̃θλτ ∧∇λA
µ1···µk

ν1···νl
∧ ∇τB

ρ1···ρm
σ1···σn

+ (−1)deg(A)D̃θλφ ∧ R̃τφ ∧ iλA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

+ θφτ
(

R̃λφ −∇φT
λ + iφR

λ
χ ∧ dxχ

)

∧ iλA
µ1···µk

ν1···νl
∧ ∇τB

ρ1···ρm
σ1···σn

+ (−1)deg(A)θλφ
(

R̃τφ −∇φT
τ + iφR

τ
χ ∧ dxχ

)

∧ ∇λA
µ1···µk

ν1···νl
∧ iτB

ρ1···ρm
σ1···σn

− θλτ

[(

k
∑

i=1

iλR
µi

φ ∧ A
µ1···µi−1φµi+1···µk

ν1···νl

−

l
∑

i=1

iλR
φ
νi
∧ Aµ1···µk

ν1···νi−1φνi+1···νl

)

∧ ∇τB
ρ1···ρm

σ1···σn
+ ∇λA

µ1···µk
ν1···νl

∧

(

m
∑

i=1

iτR
µi

φ ∧ B
ρ1···ρi−1φρi+1···ρm

σ1···σn

−

n
∑

i=1

iτR
φ
νi
∧ Bρ1···ρm

σ1···σi−1φσi+1···σn

)]

. (3.49)

Hence for the Leibniz rule (3.38) to hold for arbitrary tensor-valued differential

forms, we have to introduce the following constraints:

(i) The connection D̃ is symplectic

D̃θµν = (∇̃ρθ
µν)dxρ = 0 . (3.50)

(ii) The interior product of the curvature of ∇ vanishes

iµR
ν
ρ = 0 . (3.51)

This implies that the curvature of ∇ has to vanish, Rνρ = 1
2 dxµ ∧ iµR

ν
ρ = 0.

(iii) The curvature two-forms and the torsion two-form satisfy

R̃µν −∇νT
µ + iνR

µ
ρ ∧ dxρ = 0 . (3.52)

Taking (3.51) into account we obtain

R̃µν = ∇νT
µ . (3.53)
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It would be quite tempting to require that the other connection D̃ satisfies a

similar Leibniz rule as (3.38). Such property would impose additional constraints

on the connections and further restrict the geometry. However, we do not require

such property for D̃, because the Poisson bracket (3.33) has been defined with ∇,

not with ∇̃, which makes D the natural choice for the Leibniz rule (3.38).

Graded Jacobi identity

{

Aµ1···µk
ν1···νl

,
{

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

}}

+ (−1)deg(A)[deg(B)+deg(C)]
{

Bρ1···ρm
σ1···σn

,
{

Cλ1···λi

τ1···τj
, Aµ1···µk

ν1···νl

}

}

+ (−1)[deg(A)+deg(B)] deg(C)
{

Cλ1···λi

τ1···τj
,
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

}

= 0 .

(3.54)

First we calculate the Poisson bracket

{

Aµ1···µk
ν1···νl

,
{

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

}}

= θφ1χ1∇χ1
θφ2χ2∇φ1

Aµ1···µk
ν1···νl

∧ ∇φ2
Bρ1···ρm

σ1···σn
∧ ∇χ2

Cλ1···λi

τ1···τj

+ θφ1χ1θφ2χ2

(

∇φ1
Aµ1···µk

ν1···νl
∧ ∇χ1

∇φ2
Bρ1···ρm

σ1···σn
∧ ∇χ2

Cλ1···λi

τ1···τj

+ ∇φ1
Aµ1···µk

ν1···νl
∧ ∇φ2

Bρ1···ρm
σ1···σn

∧ ∇χ1
∇χ2

Cλ1···λi

τ1···τj

)

+ (−1)deg(B)θφ1χ1∇χ1
R̃φ2χ2 ∧ ∇φ1

Aµ1···µk
ν1···νl

∧ iφ2
Bρ1···ρm

σ1···σn
∧ iχ2

Cλ1···λi

τ1···τj

+ θφ1χ1R̃φ2χ2 ∧
(

(−1)deg(B)∇φ1
Aµ1···µk

ν1···νl

∧ iφ2
∇χ1

Bρ1···ρm
σ1···σn

∧ iχ2
Cλ1···λi

τ1···τj

+ (−1)deg(B)∇φ1
Aµ1···µk

ν1···νl
∧ iφ2

Bρ1···ρm
σ1···σn

∧ iχ2
∇χ1

Cλ1···λi

τ1···τj

+ (−1)deg(A)iφ2
Aµ1···µk

ν1···νl
∧ iχ2

∇φ1
Bρ1···ρm

σ1···σn
∧∇χ1

Cλ1···λi

τ1···τj

+ (−1)deg(A)+deg(B)iφ2
Aµ1···µk

ν1···νl
∧ ∇φ1

Bρ1···ρm
σ1···σn

∧ iχ2
∇χ1

Cλ1···λi

τ1···τj

)

+ (−1)deg(B)−1R̃φ1χ1 ∧ iχ1
R̃φ2χ2

∧ iφ1
Aµ1···µk

ν1···νl
∧ iφ2

Bρ1···ρm
σ1···σn

∧ iχ2
Cλ1···λi

τ1···τj

+ (−1)deg(A)+deg(B)R̃φ1χ1 ∧ R̃φ2χ2
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∧
(

iφ1
Aµ1···µk

ν1···νl
∧ iχ1

iφ2
Bρ1···ρm

σ1···σn
∧ iχ2

Cλ1···λi

τ1···τj

+ (−1)deg(B)+1iφ1
Aµ1···µk

ν1···νl
∧ iφ2

Bρ1···ρm
σ1···σn

∧ iχ1
iχ2
Cλ1···λi

τ1···τj

)

,

(3.55)

where we have used (3.42). Cycling through A
µ1···µk

ν1···νl
, B

ρ1···ρm
σ1···σn

and

Cλ1···λi

τ1···τj
, using the symmetry property (3.19) of the exterior product and intro-

ducing the expression (3.28) for the commutators of covariant derivatives, gives the

left-hand side of the graded Jacobi identity (3.54) as
{

Aµ1···µk
ν1···νl

,
{

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

}}

+ (−1)deg(A)[deg(B)+deg(C)]
{

Bρ1···ρm
σ1···σn

,
{

Cλ1···λi

τ1···τj
, Aµ1···µk

ν1···νl

}

}

+ (−1)[deg(A)+deg(B)] deg(C)
{

Cλ1···λi

τ1···τj
,
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

}

=
[

θφ1χ1
(

∇χ1
θφ2χ2 − θφ2ψT

χ2

χ1ψ

)

+ θφ2χ1
(

∇χ1
θχ2φ1 − θχ2ψT

φ1

χ1ψ

)

+ θχ2χ1
(

∇χ1
θφ1φ2 − θφ1ψT

ψ2

χ1ψ

)

]

∇φ1
Aµ1···µk

ν1···νl

∧ ∇φ2
Bρ1···ρm

σ1···σn
∧ ∇φ3

Cλ1···λi

τ1···τj

+ θφ1χ1θφ2χ2

[(

k
∑

i=1

R
µi

ψφ1φ2
A
µ1···µi−1ψµi+1···µk

ν1···νl

−

l
∑

i=1

R
ψ
νiφ1φ2

A
µ1 ···µk

ν1···νi−1ψνi+1···νl

)

∧ ∇χ1
Bρ1···ρm

σ1···σn
∧ ∇χ2

Cλ1···λi

τ1···τj
+ ∇φ1

Aµ1···µk
ν1···νl

∧

(

k
∑

i=1

R
ρi

ψχ1φ2
B
ρ1···ρi−1ψρi+1···ρm

σ1···σn

−

l
∑

i=1

R
ψ
σiχ1φ2

B
ρ1···ρm

σ1···σi−1ψσi+1···σn

)

∧ ∇χ2
Cλ1···λi

τ1···τj
+ ∇φ1

Aµ1···µk
ν1···νl

∧ ∇φ2
Bρ1···ρm

σ1···σn

∧

(

k
∑

i=1

Rλi

ψχ1χ2
C
λ1···λi−1ψλi+1···λi

τ1···τj

−

l
∑

i=1

R
ψ
τiχ1χ2

Cλ1···λi

τ1···τi−1ψτi+1···τj

)
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−R
ψ
ωφ1φ2

dxω ∧
(

iψA
µ1···µk

ν1···νl
∧ ∇χ1

Bρ1···ρm
σ1···σn

∧ ∇χ2
Cλ1···λi

τ1···τj

+ (−1)deg(A)+1∇χ1
Aµ1···µk

ν1···νl
∧ iψB

ρ1···ρm
σ1···σn

∧ ∇χ2
Cλ1···λi

τ1···τj

+ (−1)deg(A)+deg(B)∇χ1
Aµ1···µk

ν1···νl
∧∇χ2

Bρ1···ρm
σ1···σn

∧ iψC
λ1···λi

τ1···τj

)

]

+ θφ1χ1∇χ1
R̃φ2χ2 ∧

(

(−1)deg(B)∇φ1
Aµ1···µk

ν1···νl

∧ iφ2
Bρ1···ρm

σ1···σn
∧ iχ2

Cλ1 ···λi

τ1···τj

+ (−1)deg(A)+deg(B)+1iχ2
Aµ1···µk

ν1···νl
∧ ∇φ1

Bρ1···ρm
σ1···σn

∧ iφ2
Cλ1···λi

τ1···τj

+ (−1)deg(A)iφ2
Aµ1···µk

ν1···νl
∧ iχ2

Bρ1···ρm
σ1···σn

∧ ∇φ2
Cλ1···λi

τ1···τj

)

+ (−1)deg(B)−1
(

R̃φ1χ1 ∧ iχ1
R̃φ2χ2 + R̃φ2χ1 ∧ iχ1

R̃χ2φ1 + R̃χ2χ1 ∧ iχ1
R̃φ1φ2

)

∧ iφ1
Aµ1···µk

ν1···νl
∧ iφ2

Bρ1···ρm
σ1···σn

∧ iχ2
Cλ1···λi

τ1···τj
. (3.56)

Since the graded Jacobi identity (3.54) requires that the right-hand side of (3.56)

vanishes, we have to introduce the following constraints:

(i) A covariant version of the Jacobi identity for the Poisson bivector
∑

(µ,ν,ρ)

θµσ
(

∇σθ
νρ − θνλT

ρ
σλ

)

=
∑

(µ,ν,ρ)

θµσθνλT
ρ
σλ = 0 , (3.57)

where (3.10) has been used in the first equality. This constraint is already

satisfied (3.7).

(ii) The curvature tensor of the connection ∇ vanishes (3.12).

(iii) The curvature two-form of the connection ∇̃ is covariantly constant under ∇,

∇µR̃
νρ = 0 . (3.58)

This is equivalent to the curvature tensor of ∇̃ having the same property (3.13).

(iv) The curvature R̃µν satisfies (3.14).

Comparing the constraints needed to satisfy the graded differential Poisson

algebra of tensor-valued differential forms to the constraints (3.6) and (3.12)–(3.14)

for differential forms obtained in the literature, we find that there is no need for new

constraints. There are new conditions (3.51), (3.53) and (3.57) on the connections,

but they are all satisfied due to the vanishing of the curvature of the connection ∇

(3.12), the definition of the two connections (3.4) in terms of the same set of connec-

tion coefficients and the covariant Jacobi identities (3.7).k Thus this generalization

kSee Refs. 9 and 3 for how the condition (3.53) is implied by the definition of the two connections
(3.4), the vanishing of the curvature of the connection ∇ (3.12) and the so-called first Bianchi
identity (2.29) in its tensorial form.
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to tensor-valued differential forms does not require any additional constraints on

the connections.

It has been shown9 that due to the constraints (3.12) and (3.6) there exists a

local coordinate system {Φα} where the connection coefficients are given in terms

of the invertible Poisson bivector θαβ = {Φα,Φβ} as

Γαβγ = θαδ∂βωδγ . (3.59)

Here we refer to these coordinates by the first part of the alphabet α, β, γ, . . . . The

form (3.59) of the connection coefficients Γαβγ is covariant under the group of affine

transformations of the coordinates Φα,

Φα → Nα
βΦ

β + V α , (3.60)

where Nα
β and V α are constants, since both sides of (3.59) transform like tensors

under such affine transformations. The torsion tensor and the (nonvanishing) curva-

ture tensor are, of course, also given by the Poisson structure in these coordinates,

e.g. Tαβγ = θαδ∂δωβγ . Another special basis is provided by the one-forms PαβdΦβ ,

with respect to which the connection ∇ is trivial, that simplifies many calculations.

Most importantly one finds that the Poisson bivector is quadratic in the coordinates

Φα by solving the identity R̃
γδ

αβ = ∂βT
γδ

α for the torsion and then the torsion

T βγ
α = ∂αθ

βγ for θαβ ,l

θαβ = {Φα,Φβ} =
1

2
R̃

αβ
γδ ΦγΦδ + fαβγ Φγ + gαβ , (3.61)

where R̃ γδ
αβ , fαβγ and gαβ are constants (all antisymmetric under α ↔ β). This is

somewhat analogous to Darboux’s theorem for symplectic geometry.

We provide some further analysis on the constraints imposed on the connections.

First we calculate the vanishing covariant derivative ∇µ of R̃νρ (3.58) by using the

formula (3.10) that is implied by the symplecticity of ∇̃:

∇µR̃
νρ = ∇µ

(

θνσR̃ρσ
)

=
(

T νµλθ
λσ + T σµλθ

νλ
)

R̃ρσ + θνσ∇µR̃
ρ
σ = 0 . (3.62)

Multiplying by the symplectic form ωτν (sum over ν), introducing the constraint

(3.53) and renaming some of the indices yields
(

T λµτωνλθ
τσ + T σµν

)

∇σT
ρ + ∇µ∇νT

ρ = 0 . (3.63)

Thus the second covariant derivatives of the torsion can be written in terms of first

covariant derivatives of the torsion multiplied by the torsion, the Poisson bivector

and the symplectic form.

Let us consider the antisymmetric and the symmetric parts of (3.63) with respect

to the indices µ and ν. According to (3.28) and the vanishing of the curvature of

the connection ∇ (3.12) we have [∇µ,∇ν ] = −T ρµν∇ρ. Hence we can decompose

∇µ∇ν = ∇(µ∇ν) + ∇[µ∇ν] = ∇(µ∇ν) −
1

2
T ρµν∇ρ . (3.64)

lHere we have used θαβ and ωαβ to raise and lower indices respectively. See Ref. 9 for details.
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Thus the antisymmetric part of (3.63) is

1

2

(

(

T λµτωνλ − T λντωµλ
)

θτσ + T σµν

)

∇σT
ρ = 0 . (3.65)

Assuming (3.53) does not vanish, (3.65) implies
(

T λµτωνλ − T λντωµλ
)

θτσ + T σµν = 0 (3.66)

or equivalently
∑

(µ,ν,ρ)

T σµνωσρ = 0 . (3.67)

Together (3.7) and (3.67) impose a fairly strict set of conditions on the torsion —

though not enough to fix it completely.

The symmetric part of (3.63), which can be written

∇(µ∇ν)T
ρ =

1

2

(

T σµλωνσ + T σνλωµσ
)

θλτ∇τT
ρ , (3.68)

does not provide such an interesting result.

3.3. Star product

The star product for tensor-valued differential forms can be defined similarly as in

Ref. 3,

Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

= Aµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

+

∞
∑

n=1

~
nCn

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

, (3.69)

where Cn are bilinear covariant differential operators of at most order n in each

argument, which are constructed from the covariant derivatives ∇µ, the Poisson

bivector θ, the torsion tensor and the curvature tensor(s). Further the operators Cn
are chosen so that the star product (3.69) satisfies the following properties:

(i) The star product is associative

Aµ1···µk
ν1···νl

?
(

Bρ1···ρm
σ1···σn

? Cλ1···λi

τ1···τj

)

=
(

Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

)

? Cλ1···λi

τ1···τj
. (3.70)

(ii) The first order deformation is given by the Poisson bracket (3.33)

C1

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

=
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

. (3.71)

(iii) The constant function, M 3 x 7→ 1, is the identity: 1 ? A = A ? 1 = A.

(iv) Every Cn is of order n in the Poisson bivector θ (including its covariant deriva-

tives (3.10) and the curvature (3.9)) and it has the degree

deg
(

Cn
(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

)

= deg(A) + deg(B) . (3.72)
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(v) The operators Cn have the generalized Moyal symmetry

Cn
(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

= (−1)deg(A) deg(B)+nCn
(

Bρ1···ρm
σ1···σn

, Aµ1···µk
ν1···νl

)

. (3.73)

To the second order in the deformation parameter ~ the star product is given by

C2

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

=
1

2
θλ1τ1θλ2τ2∇λ1

∇λ2
Aµ1···µk

ν1···νl
∧ ∇τ1∇τ2B

ρ1···ρm
σ1···σn

+
1

3

(

θλ1τ1∇τ1θ
λ2τ2 +

1

2
θλ2φθτ2χT λ1

φχ

)

×
(

∇λ1
∇λ2

Aµ1···µk
ν1···νl

∧ ∇τ2B
ρ1···ρm

σ1···σn

+ ∇τ2A
µ1···µk

ν1···νl
∧ ∇λ1

∇λ2
Bρ1···ρm

σ1···σn

)

+ (−1)deg(A)θλ1τ1R̃λ2τ2 ∧∇λ1
iλ2
Aµ1···µk

ν1···νl
∧∇τ1 iτ2B

ρ1···ρm
σ1···σn

−
1

2
R̃λ1τ1 ∧ R̃λ2τ2 ∧ iλ1

iλ2
Aµ1···µk

ν1···νl
∧ iτ1iτ2B

ρ1···ρm
σ1···σn

−
1

3
R̃λ1τ1 ∧ iτ1R̃

λ2τ2 ∧
(

(−1)deg(A)iλ1
iλ2
Aµ1···µk

ν1···νl

∧ iτ2B
ρ1···ρm

σ1···σn
+ iλ2

Aµ1···µk
ν1···νl

∧ iλ1
iτ2B

ρ1···ρm
σ1···σn

)

. (3.74)

The second term of (3.74) can be simplified by using (3.10) and (3.7),

θµσ∇σθ
νρ +

1

2
θνσθρλT

µ
σλ = −

1

2
θνσθρλT

µ
σλ , (3.75)

but we choose to keep the similarity with the star product of Ref. 3.m Proof of

the associativity of the star product (3.69) to O(~2) is completely analogous with

Ref. 3.n At the classical level O(1) the associativity is trivially implied by the

associativity of the exterior product. At O(~) the associativity is implied by the

graded symmetry rule (3.37). At O(~2) the associativity condition

Aµ1···µk
ν1···νl

∧ C2

(

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

)

− C2

(

Aµ1···µk
ν1···νl

∧ Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

)

+ C2

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

∧ Cλ1···λi

τ1···τj

)

mThere is a sign difference in the second factor of the second term of (3.74) compared to Ref. 3
that is enabled by the antisymmetry of the first factor under λ2 ↔ τ2. The motivation for this
cosmetic change is to emphasize the symmetry property (3.73) of C2.
nDue to the vanishing of the curvature of the connection ∇ the tensorial indices can mostly be
ignored in the calculation verifying the associativity (3.70) to O(~2).
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− C2

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

∧ Cλ1···λi

τ1···τj

= C1

(

C1

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

, Cλ1···λi

τ1···τj

)

− C1

(

Aµ1···µk
ν1···νl

, C1

(

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

))

(3.76)

can be shown to hold by using the properties of the Poisson bracket, the constraints

these properties imply — namely (3.6), (3.7), (3.12)–(3.14) — and the properties

of the covariant derivative and the interior product — including the commutativity

of the two (3.42), iµiν = −iνiµ and the decomposition (3.64).

As discussed in Ref. 3 the next order ~
3 deformation could be derived with a

considerable amount of calculation by finding an ansatz that satisfies the required

conditions.

If the torsion vanishes, we have a flat symplectic connection ∇. Then the star

product (3.69) can be defined by

Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

∣

∣

T=0

= Aµ1···µk
ν1···νl

∧Bρ1···ρm
σ1···σn

+

∞
∑

n=1

~
n

n!
θλ1τ1 · · · θλnτn∇λ1

· · · ∇λn
Aµ1···µk

ν1···νl
∧ ∇τ1 · · · ∇τn

Bρ1···ρm
σ1···σn

,

(3.77)

since now the covariant derivatives commute both with each other and with the

Poisson bivector θµν .

3.4. On the algebra of tensors

Thus by starting from the graded differential Poisson structure on the algebra of

forms Ω(M), we have generalized it to the algebra of tensor-valued differential forms

(2.13) and consequently to the subalgebra of all tensor fields on M ,

T (M) =

∞
⊕

k,l=0

Ω0(M,T k,l) ⊂ Ω(M,T ) . (3.78)

For such tensor-valued zero-forms the Poisson bracket (3.33) is reduced to (3.34)

and in the star product,

Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

= Aµ1···µk
ν1···νl

Bρ1···ρm
σ1···σn

+

∞
∑

n=1

~
nCn

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

, (3.79)
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the deformation of order ~
2 is written

C2

(

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

)

=
1

2
θλ1τ1θλ2τ2∇λ1

∇λ2
Aµ1···µk

ν1···νl
∇τ1∇τ2B

ρ1···ρm
σ1···σn

+
1

3

(

θλ1τ1∇τ1θ
λ2τ2 +

1

2
θλ2φθτ2χT λ1

φχ

)

×
(

∇λ1
∇λ2

Aµ1···µk
ν1···νl

∇τ2B
ρ1···ρm

σ1···σn

+ ∇τ2A
µ1···µk

ν1···νl
∇λ1

∇λ2
Bρ1···ρm

σ1···σn

)

. (3.80)

In the case of vanishing torsion we obtain the simple star product of tensor fields

Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

∣

∣

T=0
= Aµ1···µk

ν1···νl
exp

(

~
←

∇λθ
λτ
→

∇τ

)

Bρ1···ρm
σ1···σn

.

(3.81)

In the recent work Ref. 5, a covariant star product of functions was defined on a

symplectic manifold with vanishing torsion and curvature (T = R = 0). It was

also proposed that this star product could be straightforwardly extended for tensor

fields. We recognize that the reduced (T = R = R̃ = 0) case (3.81) of our more

general star product of tensor fields (3.79) is exactly what the extension of the star

product of Ref. 5 to tensor fields would be.

3.5. Discussion

When we consider possible applications of these star products (3.69) and (3.79) in

physics, particularly gravity and gauge theory, the problem (perhaps also a possi-

bility) is that the structure of the graded differential Poisson algebra of (tensor-

valued) differential forms requires strict constraints on the underlying symplectic

manifold. Due to the required constraints the torsion and the curvature are rather

restricted, which is likely to cause some problems particularly for theories of gravity.

Still the connection ∇ can have a nonvanishing torsion and in this case the sym-

plectic connection ∇̃ also has curvature. This should open up the possibility for

some nontrivial gravitational dynamics.

In the extremely restricted (T = R = R̃ = 0) case (3.81) that was also recently

studied in Ref. 5 there is virtually impossible to have a nontrivial theory of gravity,

because neither the energy–momentum tensor nor the spin density tensor are sup-

ported due to the vanishing of both the curvature and the torsion. Setting up the

equivalence principle would clearly be impossible. Thus this star product (3.81) can

be used only in cases where the curvature and the torsion vanish in the correspond-

ing commutative theory. Then in the noncommutative extension of the theory we

would find corrections to the geometrical objects in the higher orders of the defor-

mation parameter ~ due to the star product. In the gravitational field equations
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these corrections would require compensating corrections to the energy–momentum

tensor and possibly to the spin density tensor depending on the chosen action. This

is problematic since, as we noted, matter fields are not supported in this case.o

An example of such theory is the two-dimensional noncommutative dilaton gravity

studied in Ref. 5.

In the case of gauge theory, these restrictions are not quite as severe as in the

case of gravity. Noncommutative gauge theory with Yang–Mills actions has been

studied11–13 in this setting. The former work employed the popular Seiberg–Witten

map.14 In Refs. 12 and 13, the star product of differential forms was generalized to

Lie algebra-valued differential forms in order to be able to apply it to the connection

one-form of the gauge theory, as well as to the gauge transformation parameter and

the field strength, which are all Lie algebra-valued. This generalization is fairly

simple to achieve since the generators of the internal gauge symmetry commute

with the covariant derivation ∇. The generalization to tensor-valued differential

forms we have presented can be further generalized to Lie algebra-valued objects,

Aµ1···µk
ν1···νl

= Aµ1···µk a
ν1···νl

Ta , (3.82)

where Ta are the generators of the Lie algebra, along the lines of Ref. 12 with

relative ease.p The star product is defined by

Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

= Aµ1···µk a
ν1···νl

∧ Bρ1···ρm b
σ1···σn

TaTb

+
∞
∑

n=1

~
nCn

(

Aµ1···µk a
ν1···νl

, Bρ1···ρm b
σ1···σn

)

TaTb ,

(3.83)

where the operators Cn are defined as before. In order to obtain a star commutator

that is consistent with Ref. 12 we have required the symmetry property (3.73) for

Cn, though it is not required in Ref. 3,
[

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

]

?

≡ Aµ1···µk
ν1···νl

? Bρ1···ρm
σ1···σn

− (−1)deg(A) deg(B)Bρ1···ρm
σ1···σn

? Aµ1···µk
ν1···νl

= Aµ1···µk a
ν1···νl

∧Bρ1···ρm b
σ1···σn

[Ta, Tb]

+

∞
∑

n=1

~
nCn

(

Aµ1···µk a
ν1···νl

, Bρ1···ρm b
σ1···σn

)

[Ta, Tb](n) , (3.84)

oSuch corrections to the right-hand (energy–momentum) side of field equations frequently appear
in noncommutative theories of gravity when a star product is introduced. Particularly in the case of
vacuum field equations such corrections cannot be associated to matter fields, because presumably
there is no matter in empty space. So the corrections would have to be physically interpreted as
some kind of energy–momentum inherent to the noncommutative space–time. However, at this
point such interpretations are mere speculations.
pPlease note that one of the misunderstandings of Ref. 4 has been inherited to Ref. 12. Namely,
[∇µ,∇ν ]α = 0 is not required for any α ∈ Ω(M), since it would also imply that the torsion
vanishes, which is not necessary.
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where [Ta, Tb](n) = TaTb − (−1)nTbTa is the anticommutator, {Ta, Tb}, for every

odd n and the commutator, [Ta, Tb], for every even n.

4. Covariant Star Product on a Poisson Manifold

In this section, we discuss a covariant star product on a regular Poisson manifoldM ,

first for functions and then for tensor fields. SinceM is regular, we can require that a

linear connection exists onM . On a nonregular Poisson manifold we would generally

define a different connection on each symplectic leaf of M , or define a contra-

variant connection on M and use the associated contravariant derivative instead of

a covariant one.15–17

It was shown by Kontsevich18 that a star product can be constructed for smooth

functions on R
d with any Poisson structure θ in the sense of deformation quantiza-

tion, so that at first order in the deformation parameter the star product is given

by the Poisson bracket of functions. A path integral formulation of the Kontsevich

quantization has been developed.19 The Kontsevich formula is not well-suited for

calculating the star product beyond ~
2, because it contains integrals that cannot be

solved by any standard method. The star product of functions has been calculated

up to ~
4 by using a simpler iterative approach.20

The existence of a covariant star product of functions on any Poisson manifold

(M, θ) with a torsion-free linear connection has been shown in Ref. 6 and given

explicitly to ~
3 as an example.

4.1. Star product of functions

The Poisson structure on the algebra of smooth functions f , g ∈ F (M) is defined by

{f, g} = θ(df, dg) = θµν∂µf∂νg , (4.1)

where θ is a Poisson bivector field, i.e. a smooth section of ∧2TM . The Poisson

bracket (4.1) satisfies the required properties:

(i) Antisymmetry: {f, g} = −{g, f}.

(ii) Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 . (4.2)

(iii) Derivation in the second argument:

{f, gh} = {f, g}h+ g{f, h} (4.3)

when the bivector θµν satisfies the Jacobi identity (3.2).

The star product of functions f, g ∈ F (M) is defined by

f ? g = fg +

∞
∑

n=1

~
nCn(f, g) , (4.4)
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where the bidifferential operators Cn : F (M) × F (M) → F (M) are constructed

from the torsion-free linear connection ∇, the Poisson bivector and the curvature

tensor. At order ~ one has

C1(f, g) = {f, g} . (4.5)

The star product (4.4) is required to be associative to all orders in ~,

f ? (g ? h) = (f ? g) ? h . (4.6)

Such star product of functions is given to order ~
3 by6

C2(f, g) =
1

2
θµνθρσ∇µ∇ρf∇ν∇σg

+
1

3
θµσ∇σθ

νρ(∇µ∇νf∇ρg + ∇ρf∇µ∇νg)

+
1

6
∇ρθ

µν∇µθ
ρσ∇νf∇σg , (4.7)

C3(f, g) = −
1

6
θρσ(LXf

∇)µνρ(LXg
∇)νµσ , (4.8)

where LXf
∇ is the tensor defined by the Lie derivative of the connection ∇ along

the Hamiltonian vector field Xf = i(df)θ:

(LXf
∇)µνρ = θσµ∇ν∇ρ∇σf + ∇νθ

σµ∇ρ∇σf + ∇ρθ
σµ∇ν∇σf

+ ∇ν∇ρθ
σµ∇σf +Rµσνρθ

σλ∇λf . (4.9)

Note that since the torsion vanishes, T ρµν = 0, the covariant derivatives commute

[∇µ,∇ν ]f = −T ρµν∇ρf = 0 , (4.10)

for every f ∈ F (M). This star product exists for any Poisson manifold (M, θ) and

any torsion-free connection ∇.

A covariant star product of functions can alternatively be defined directly

according to the Kontsevich universal formula18 by replacing the partial deriva-

tives ∂µ with the covariant derivatives ∇µ in all Cn, n > 1. By using the results of

Ref. 20, one can write this star product up to order ~
4. At orders higher than ~

2,

where second and higher covariant derivatives of the bivector θ appear, we have to

introduce another condition

[∇µ,∇ν ]θ
ρσ = 0 , (4.11)

in addition to the vanishing of the torsion (4.10), in order to ensure the associativity

of the star product. Thus the curvature tensor of the connection satisfies

[∇µ,∇ν ]θ
ρσ = −T λµν∇λθ

ρσ +R
ρ
λµνθ

λσ +Rσλµνθ
ρλ

= −θσλRρλµν + θρλRσλµν = 0 (4.12)

or equivalently

Rµνρσ = Rνµρσ . (4.13)
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It is sufficient for θ to be covariantly constant, ∇µθ
νρ = 0, but it is not necessary.q

Without the above condition for the curvature we would have to add terms with

curvature contributions to the star product in order to satisfy the associativity re-

quirement. Indeed this approach is nothing more than a special case of the universal

star product studied in Ref. 6.

Relaxing the condition of Ref. 6 that the connection is torsion-free appears to

be very difficult without imposing some constraints on both the curvature and the

torsion. We shall discuss this briefly while considering a star product of tensor fields.

4.2. Star product of tensor fields

Although we have found a covariant star product of tensor fields on a symplectic

manifold as a special case of a star product of tensor-valued differential forms in

Sec. 3, we would like a find a construction with less constraints on the connec-

tion. Since it is the definition of the Poisson bracket that primarily imposes the

constraints on the connections in the case of tensor-valued differential forms, we at-

tempt to define a Poisson bracket of tensor fields with a minimal set of properties.

The Poisson structure (4.1) can be extended on the algebra of smooth tensor

fields A, B ∈ T (M) by

{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

= θλτ∇λA
µ1···µk

ν1···νl
∇τB

ρ1···ρm
σ1···σn

. (4.14)

For a function f ∈ F (M) the bracket {f, ·} is a covariant derivation with respect

to the second argument

{

f,Aµ1···µk
ν1···νl

}

= ∇Xf
Aµ1···µk

ν1···νl
, (4.15)

with the Hamiltonian vector fieldXµ
f = θνµ∇νf . We postulate the following proper-

ties for the Poisson bracket as a straightforward generalization of the usual case of

functions.

(i) Antisymmetry:

{

Aµ1 ···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

= −
{

Bρ1···ρm
σ1···σn

, Aµ1···µk
ν1···νl

}

. (4.16)

(ii) Jacobi identity:

{

Aµ1 ···µk
ν1···νl

,
{

Bρ1···ρm
σ1···σn

, Cλ1···λi

τ1···τj

}}

+
{

Bρ1···ρm
σ1···σn

,
{

Cλ1···λi

τ1···τj
, Aµ1···µk

ν1···νl

}}

+
{

Cλ1···λi

τ1···τj
,
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}}

= 0 . (4.17)

qIn the case of a symplectic manifold the condition ∇µθνρ = 0 would be equivalent to the
symplectic form ω to be covariantly constant, i.e. having a symplectic torsion-free connection.
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(iii) “Derivation in the second argument”:

{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

Cλ1···λi

τ1···τj

}

=
{

Aµ1···µk
ν1···νl

, Bρ1···ρm
σ1···σn

}

Cλ1···λi

τ1···τj

+Bρ1···ρm
σ1···σn

{

Aµ1···µk
ν1···νl

, Cλ1···λi

τ1···τj

}

. (4.18)

The Jacobi identity (4.17) imposes the following two constraints on the connec-

tion ∇:

∑

(µ,ν,ρ)

θµσ
(

∇σθ
νρ − θνλT

ρ
σλ

)

= 0 , (4.19)

θµλθντR
ρ
σλτ = 0 . (4.20)

Note that according to (4.20) the curvature tensor does not need to vanish every-

where since the Poisson bivector θµν is not necessarily invertible.

Then we quantize the Poisson manifold by defining a covariant star product of

tensor fields as in (3.79). The order ~ deformation, C1, is again defined to be the

Poisson bracket (4.14). The operators Cn are chosen to satisfy the same properties

as in Subsec. 3.3.r A propriate ansatz for C2 can be found by calculating the side

of the associativity condition at order ~
2 that depends on C1 and choosing a C2

that produces a similar expression on the other side of the condition. We choose C2

to be of the same form as in (3.80). The associativity property of the star product

imposes the additional constraint

∑

(µ,ν,ρ)

θµσ
(

∇σθ
νρ +

1

2
θνλT

ρ
σλ

)

= 0 . (4.21)

In order to satisfy both (4.19) and (4.21), we require that the connection satisfies

the covariant Jacobi identities (3.7), so that the cyclic sum over each of the terms

of (4.19) and (4.21) is zero. Thus the constraints (3.7) and (4.20) are all that is

needed for a covariant star product of tensor fields on a Poisson manifold up to

order ~
2.

In the case of a star product of functions there is no need for the constraint

(4.20). However, the other constraints (3.7) are required, and they constrain the

connection so that both the torsion and the curvature are affected. Thus relaxing

the torsion-freeness constraint has lead to having some constraints for both the

torsion and the curvature.

At present it is unclear whether additional constraints need to be introduced

for the connection at higher orders in ~.

rThe sign factor in the symmetry property (3.73) is obviously replaced with (−1)n .
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5. Conclusions

We have generalized the recently defined covariant star product of differential forms

on a symplectic manifold3 to tensor-valued differential forms and consequently to

tensor fields of any type. This generalization does not require any new constraints

on the connections. Possible applications of the star product to gravity and gauge

theory have been discussed, considering the rather strict constraints the connections

have to satisfy. Further study of both of these applications is required.

Then we proposed a covariant star product of tensor fields on a Poisson manifold

with a linear connection that has less constraints than in the first case. Thus this

star product could be a more viable option for theories of gravity.

We also discussed the possibility to relax the torsion-freeness condition of the

linear connection of the universal covariant star product of functions defined on

a Poisson manifold in Ref. 6. It was found that this requires one to impose some

constraints on both the torsion and the curvature, namely (3.7) in our case.

Finally, a remark about the Poisson algebra of tensor fields is in order. A Pois-

son algebra consists of a commutative associative algebra endowed with a Poisson

bracket. A graded-commutative associative algebra — like the algebra of differen-

tial forms — can be turned into a graded Poisson algebra by introducing a graded

Poisson bracket. However, the algebra of tensor fields is neither commutative nor

graded-commutative. This is the reason why the Poisson structure of tensor fields

(4.14)–(4.18) was defined for the components of the tensors, which are of course

commutative functions. This raises the question: could a Poisson structure for ten-

sor fields be defined in some other way compared to the definition given above?
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