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Preface 
 

 

 The Physics Conference TIM series has become very popular during the last 

years and is close to celebrate its first decade. The present proceedings volume contains 

selected papers presented at the Physics Conference TIM – 09 which is now one of the 

major events in sciences organized in the western region of Romania. The Conference 

was organized by the Faculty of Physics (www.physics.uvt.ro) from the West 

University of Timisoara (www.uvt.ro) between 27 of November to 28 of November 

2009.  

The aim of the Physics Conference TIM-09 (http://www.tim.uvt.ro) is to discuss 

actual national and international problems in physics, to bring together researchers and 

scientists from Romania and abroad, and to establish scientific contacts between them.  

The scientific program of the conference included invited lectures, oral and 

poster presentations, as well as discussions on various topics of present interest, such as, 

but not limited to condensed matter physics and applications, theoretical and 

computational physics, and applied physics. 

 Invited lecturers, participants and collaborators to the contributions here 

presented were scientists from Bangladesh, Canada, France, Germany, Hungary, 

Ireland, Moldova, Romania, Russia, Serbia, Spain, Sweden, and United Kingdom. 

 The organizers would like to thank the keynote speakers and address their 

recognition to the Scientific Committee for the effort in reviewing the papers. A special 

note of thanks goes also to the Rector of the West University of Timisoara, Professor 

Ioan TALPOS and to the Dean of the Physics Faculty, Professor Dumitru VULCANOV 

for supporting the attempt to organize the conference in best conditions. 

 We would like also to address our appreciation to the authors of the papers 

because they contributed to the success of the conference. 

 

 

Timisoara, May 19th, 2010 

 

 

        The Editors, 

 

         

        Madalin BUNOIU 

Iosif MALAESCU 
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NONCOMMUTATIVE GAUGE THEORY WITH COVARIANT STAR PRODUCT 

 

G. Zet  
 
Department of Physics 

“Gh. Asachi” Technical University 

Iasi, ROMANIA 

 

Abstract 

We present a noncommutative gauge theory with covariant star product on a space-time with 
torsion. In order to obtain the covariant star product one imposes some restrictions on the 
connection of the space-time. Then, a noncommutative gauge theory is developed applying this 
product to the case of differential forms. Some comments on the advantages of using a space-time 
with torsion to describe the gravitational field are also given. 
 
Keywords: noncommutative gauge theory, star product, differential forms 

 

1. Introduction 

The non-commutative gauge theory has been intensively studied in the last years with the 

hope that such a theory could offer the possibility to develop a quantum theory of gravity, or 

at least to give an idea of how this could be achieved [1 - 6]. There are two major candidates 

to quantum gravity: string theory [7] and loop quantum gravity [8]. Non-commutative 

geometry and in particular gauge theory of gravity are intimately connected with both these 

approaches and the overlaps are considerable [2]. String theory is one of the strongest 

motivations for considering non-commutative space-times geometries and non-commutative 

gravitation. The dynamics of the non-commutative gravity arising from string theory [10, 11] 

is much richer than some versions of the proposed non-commutative gravity. It is suspected 

that the reason for this is the non-covariance of the Moyal star product under space-time 

diffeomorphisms. A geometrical approach to non-commutative gravity, leading to a general 

theory of non-commutative Riemann surfaces, has been also proposed in [12] (for further 

developments, see [13, 14]). 

One important problem is to develop a theory of gravity considering curved non-

commutative space-times. The main difficulty is that non-commutative parameter µνθ  is 

usually taken to be constant, which breaks the Lorentz invariance of the commutation 

relations between coordinates 

   [ ] µννµ θixx =, ,      (1.1) 

 and implicitly of any non-commutative field theory. One possible way to solve this problem 

is to consider µνθ  depending on coordinates, ( )xµνµν θθ =  and to use a covariant star 
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product. In Ref. [15] such a product has been defined between differential forms and the 

property of associativity was verified up to the second order in µνθ .  

In this paper we extend the result of Ref. [15] to case of Lie algebra valued differential 

forms following the same procedure as in our previous paper [16]. We will use a space-time 

with torsion only [9] which allows us to construct the teleparallel gravity [17-22], a much 

more convenient theory than general relativity to deal with the quantization problem [23]. 

 

2. Definition of the covariant star product 

We consider a noncommutative space-time M endowed with the coordinates 3,2,1,0, =µµx  
satisfying the commutation relation 

[ ] ( )xixx µννµ θ=, ,      (2.1) 

where ( ) ( )xx νµµν θθ −=  is a Poisson bivector [15]. The space-time is organized as a Poisson 

manifold by introducing the Poisson bracket between two functions ( )xf  and ( )xg  by 

{ } gfgf νµ
µνθ ∂∂=, .      (2.2) 

In order that the Poisson bracket satisfies the Jacobi identity, the bivector ( )xµνθ  must obeys 
the condition [24-26] 

0=∂+∂+∂ µν
ρ

σρσµ
ρ

νρνσ
ρ

µρ θθθθθθ .    (2.3) 

If a Poisson bracket is defined on M, then M is called a Poisson manifold (see [24] for 

mathematical details). 

Let us suppose that ν
ρσΓ  define a non-symmetric connection on M. Then, we can 

construct the 1-forms of connection 
µ
ρν

ρµ
ν

ρµ
νρ

µ
ν Γ=ΓΓ=Γ dxdx ,

~
,    (2.4) 

and introduce two kinds of covariant derivatives ∇
~

 and ∇ , respectively. The curvatures for 
these two connections are 

τ
λρ

ν
τσ

τ
λσ

ν
τρ

ν
λρσ

ν
λσρ

ν
λρσ ΓΓ−ΓΓ+Γ∂−Γ∂=R

~
,   (2.5) 

τ
ρλ

ν
στ

τ
σλ

ν
ρτ

ν
ρλσ

ν
σλρ

ν
λρσ ΓΓ−ΓΓ+Γ∂−Γ∂=R .   (2.6) 

The connection ∇  satisfies the identity [15] 
   [ ] ααα ρ

ρ
µνσ

ρσ
ρµννµ ∇−∧−=∇∇ TidxR, ,             (2.7) 

and an analogous formula applies for ∇
~

. Here, ρ
νµ

ρ
µν

ρ
µν Γ−Γ=T  is the torsion and ασi  denotes 

the interior product which maps the k-form α  into a ( )1−k -form [15, 16]. It has been proven 

that in order the Poisson bracket satisfies the Leibniz rule, the bi-vector ( )xµνθ  must obeys 
the property 

   0
~

≡Γ+Γ+∂=∇ µσν
σρ

σνµ
σρ

µν
ρ

µν
ρ θθθθ ,             (2.8) 

i.e. µνθ  is covariant constant under ∇
~

. 

 If  α  and β  are two differential forms, then their Poisson bracket is defined as [15] 

{ } ( ) ( ) ( )βαβαθβα νµ
µνα

νµ
µν iiR ∧∧−+∇∧∇=

~
1, ,  (2.9) 

where α  is the degree of the differential form α , and 
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ν
λρσ

µλµν
ρσ

σρµν
ρσ

µν θ RRdxdxRR
~~

,
~

2

1~
=∧= .              

In order that (2.9) satisfies the graded Jacobi identity, the connection ρ
µνΓ  must obey the 

following additional conditions [15] 
   0=ν

λρσR ,                 (2.10) 

   0
~

=∇ µν
ρσλR .                 (2.11) 

         The covariant star product between arbitrary differential forms has the general form [15] 

( )βαβαβα ,
1

n

n

n
C∑

∞

=

+∧=∗ h ,                         (2.12) 

where ( )βα ,nC  are bilinear differential operators satisfying the generalized Moyal symmetry  

   ( ) ( ) ( )αββα βα ,1, n

n

n CC
+−= .              (2.13) 

In addition, these operators must be chosen so that they satisfy the property of associativity 
( ) ( )γβαγβα ∗∗=∗∗ .              (2.14) 

 In this paper we consider the case when the symplectic manifold M  has only torsion. 
Since the curvature σ

µνρR  is vanishing [see Eq. (2.10)], one obtains the following relation 

between the curvature R
~

 and the torsion T  [15] 

   σ
νρµ

σ
µνρ TR ∇=

~
.                 (2.15) 

This relation shows that the curvature σ
µνρR

~
 vanishes too if the torsion σ

νρT  is covariant 

constant, i.e. 
   0=∇ σ

νρµT .                 (2.16) 

Therefore, if the torsion is covariant constant, the symplectic manifold M has only torsion but 
not curvature. In this case the bilinear differential operators ( )βα ,1C  and ( )βα ,2C  in the star 
product (2.12) have the expressions 
   ( ) { } βαθβαβα νµ

µν ∇∧∇=≡ ,,1C ,                          (2.17) 

              

( )

( )βαβαθθθθ

βαθθβα

σµνσνµ
ν
ρλ

σλµρµσ
ρ

νρ

σνρµ
ρσµν

∇∇∧∇−∇∧∇∇






 ∇+

+∇∇∧∇∇=

T

C ba

2

1

3

1
2

1
,2

           (2.18) 

In the following section we will develop an internal gauge theory for the case when the 
manifold M has only torsion but no torsion. 
 

 3. Noncommutative gauge theory 

Suppose that we have an internal gauge group G  whose infinitesimal generators aT  satisfy 

the algebra 
   [ ] mcbaTfiTT c

c

abba ,....,2,1,,,, == ,    (3.1) 

with the structure constants a

cb

a

bc ff −= , and that the Lie algebra valued infinitesimal parameter 

is 

   a

aTλλ ˆˆ = .       (3.2) 

We use the hat symbol “^” to denote the non-commutative quantities of our gauge theory. The 

parameter λ̂  is a 0-form, i.e. aλ̂  are functions of the coordinates µx  on the symplectic 
manifold M .  
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The gauge transformation of the non-commutative Lie valued gauge potential 

( ) a

a

a

a TATdxxAA == µ
µ

ˆˆ  is given by 

   [ ]∗−= λλδ ˆ,ˆˆˆˆ AidA ,      (3.3) 

where [ ]∗,  is the commutator defined with the covariant star product (2.12). The covariant 

derivative of the 1-form gauge potentials is 

  ( ) ( ) ν
νµ

ν
ρ

ρ
µννµµ dxAdxAAA aaaa ˆˆˆˆ ∇≡Γ−∂=∇ .              (3.4) 

We define then the curvature 2-form F̂  of the gauge potentials by 

   [ ]∗−=∧= AA
i

AddxdxFF ˆ,ˆ
2

ˆˆ
2

1ˆ νµ
µν .              (3.5) 

whose transformation law is 
    [ ]∗= FiF ˆ,ˆˆˆ λδ .      (3.6)  

We can verify that F̂  satisfies the deformed Bianchi identity [16] 

   [ ] 0ˆ,ˆˆ =− ∗FAiFd .                (3.7)  
We also remark that in zeroth order we obtain from (3.7) the usual Bianchi identity. 

 If νρĜ  is a noncommutative gauge covariant metric on M, then the Yang-Mills 
invariant action of the gauge fields ( )xAaµ  can be chosen as 

    ( ) ( )( )∫ ∫∫ ∗∗∗−=∗∗∗−= σµ
νσ

ρν
µρ FGFGxdxd

g
FGFGxdTr

g
SNC

ˆˆˆˆ
4

1ˆˆˆˆ
2

1ˆ 44
2

4
2

,  (5.4) 

where g  is the gauge coupling constant, and we used the normalization property 

( ) ITTTr abba δ
2

1
= . Imposing then the variational principle 0ˆˆ

ˆ =NCA
Sδ  with respect to the non-

commutative gauge fields aAµ
ˆ , we can obtain the non-commutative Yang-Mills field 

equations. Other models for a noncommutative gauge theory of gravity are given in [30-35]. 
 
 4. Illustrative example 

Suppose that on the manifold M we have defined the gauge fields baabae µµµ ωω −=,  [27-29] and 

fix the gauge 0=ab

µω  [9]. We define the connection coefficients 

   a

a ee µν
ρρ

µν ∂=Γ ,       (4.1) 

where ρ
ae  denotes the inverse of aeµ . Then, we consider the case of spherically symmetry and 

choose the gauge fields aeµ  as 

  




=




= A
A

diage
A

Adiage a

a ,1,1,
1

,
1

,1,1, µ
µ ,    (4.3)  

where   ( )rAA =  is a function depending only on the radial coordinate r . The non-null 
components of the connection coefficients and the torsion are respectively 

  
A

A

A

A ′
=Γ

′
−=Γ 1

11
0

10 , ,    
A

A
TT

′
=−= 0

10
0

01     (4.4) 

Also, the non-null components of the two curvatures are    

   0,
2~~

2

2
0

110
0

101 =
′−′′

=−= λ
µνρR

A

AAA
RR ,    (4.5) 

where we denoted the first and second derivatives of ( )rA  by A′  and A′′  respectively. 
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 Suppose now that only non-null parameters are 
A

10110 =−= θθ ; then we have 

  
2

10
1

01
1

10
1

01
1 ,0

~~

A

A′
−=−∇=∇=∇−=∇ θθθθ ,   (4.6)  

If we use (4.5), w can see that the tensor ν
λρσ

µλµν
ρσ θ RR

~~
=  is vanishing, and implicitly 

0
~

=∇ µν
ρσλR , if    

   02 2 =′−′′ AAA .      (4.7) 

The solutions of this equation is 

   ( )
bar

rA
+

−=
1

,      (4.8) 

where a  and b  are two arbitrary constants of integration. Therefore, in our example, the 
conditions necessary to define a covariant star product on a symplectic manifold M  
completely determine its connection. In addition, it is very interesting to see that the covariant 
derivative of the torsion has the following non-null components 

   
2

2
0

011
0

101

2

A

AAA
TT

′−′′
=−∇=∇ .              (4.9) 

Then, tacking into account the equation (4.7), we conclude that the torsion is covariant 
constant, 0=∇ ν

ρσµT , a result which is in concordance with the condition (2.16). 

All the calculations in this section have been performed by using an analytical 
program conceived for GRTensor II package of the Maple platform. Specific routines have 
been written and adapted for Maple. 
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