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Abstract. We construct a general model of gauge theory defined on a
noncommutative Poisson manifold considered as space-time. For such a purpose
we use a covariant star product between Lie algebra valued differential forms.
The constraints imposed by the Poisson structure on the connection of the space-
time are established and the property of associativity of the covariant star
product is verified. As an example, we consider the noncommutative U(2) gauge
theory defined on a symplectic space-time manifold endowed only with torsion.
It is concluded that the constraints imposed by the Poisson structure of the
space-time and the associativity property of the covariant star product
completely determine the connection of the space-time. An analytical computing
program which enables to obtain all results in this example is presented. Some
comments on the noncommutative gauge theory of gravitation are also made.
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1.Introduction
Although in the present it is not known how to describe physics to the

|Gh
Planck scale (L, = ,/—- =1,6x 10" m), there are suggestions that it may be
¢

described by some generalization of the ordinary spaces which goes under the
name of noncommutative geometry [1, 2, 3]. This explains the great attention
given to the noncommutative theories and, in particular, to the gauge theory
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formulated on a noncommutative spaces-time. One important motivation to
adopt the idea of noncommutative space-time is the hope that such a framework
could offer the possibility to develop a quantum theory of gravity or at least to
give an idea of how this could be achieved [4, 5, 6, 7, 8, 9]. There are two major
candidates to quantum gravity: string theory [10] and loop quantum gravity
[11]. Noncommutative geometry and in particular gauge theory of gravity are
intimately connected with both these approaches and the overlaps are
considerable [5]. String theory is one of the strongest motivations for
considering noncommutative space-times geometries and noncommutative
gravitation. It has been shown, for example, that in the case when the end points
of strings in a theory of open strings are constrained to move on D branes in a
constant B-field background and one considers the low-energy limit, then the
full dynamics of the theory is described by a gauge theory on a noncommutative
space-time [12].

Recently, it has been argued that the dynamics of the noncommutative
gravity arising from string theory [13] is much richer than some versions of the
proposed noncommutative gravity. It is suspected that the reason for this is the
noncovariance of the Moyal star product under space-time diffeomorphisms
[15]. A geometrical approach to noncommutative gravity, leading to a general
theory of noncommutative Riemann surfaces in which the problem of the frame
dependence of the star product is also recognized, has been proposed in [16].

Since the early days of quantum mechanics, the physicists have used
star products to build noncommutative generalizations of commuting theories
[17]. The first idea has been to consider the quantization as a deformation of the
algebra of classical observables of functions on phase space, where the first

order term O(h) is taken to be the classical Poisson bracket [18]. Star products

have been applied then in many areas of physics, including string theory.
Starting with the works of Kontsevich [19], Cattaneo and Felder [20]
and many others, the star product of functions on general Poisson manifolds is

well known, in standard coordinates on R“, to all orders in the deformation
parameter. Recently, an explicit form of a covariant star of functions on Poisson
manifolds with torsion-free linear connection has been constructed up to the

third order O(h3) [21].

In order to formulate a noncommutative gauge theory it is necessary to
generalize the star product to the exterior algebra of differential forms. A
covariant star product has been defined in Refs. [22, 23] and the result was
extended to case of Lie algebra valued differential forms in Refs. [24, 25, 26]. It
has been shown that the graded differential Poisson algebra endows the space-
time manifold with a connection having both curvature and torsion (not
necessarily torsion-free) [22] and places some constraints upon it. We can try to
apply the covariant star product to the case when the space-time is a Poisson or
a symplectic manifold which has only curvature, but the torsion vanishes. Then,
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the restriction imposed by the associativity property of the covariant star
product requires also the vanishing curvature. The corresponding connection is
flat symplectic and this reduces drastically the applicability area of the covariant
star product. Of course, it is possible to have a manifold having both curvature
and torsion or only torsion.

On the other hand, it is believed that gravity could be quantized if it is
formulated in terms of Poisson or symplectic geometry rather than Riemannian
geometry, in the context of emergent gravity [27, 28] (for further developments,
see [29]). The motivation is that any Poisson manifold can always be quantized
at least in the context of deformation quantization [19]. In addition, the
emergent gravity is deeply related to the string theory. Many essential aspects of
string theory such as AdS/CFT correspondence, open-closed string duality,
noncommutative geometry, mirror symmetry, etc. have also been realized in the
context of emergent noncommutative geometry. It is even claimed that string
theory is simply a “stringy” realization of symplectic or Poisson space-time.
This argues again why the quantization of gravity seems to dictate a Poisson (or
symplectic) structure to space-time manifold.

2. Properties of Poisson manifold

The Poisson bracket between two functions, { f, g} , is very well known
from the classical mechanics. Its basic properties are

(1) Skew-symmetry: {f,g}=—{g, [ };
(2) Jacobi identity: {f, {g,h}}+ {g, {h,f}}+ {h,{f,g}} =0;
(3) Product rule: {f,gh} = {f,g}h + g{f,h}.

In what follows we will consider a noncommutative space-time M endowed
with the coordinates x*, £ =0,1,2,3 satisfying the commutation relation

[x”,x"]zi@‘”(x), (2.1
where 0*"(x)=—-60"(x) is a Poisson bivector [22, 23, 30]. This Poisson
bivector 8" (x) is defined by

if.g}=0"0,f0,8. (2.2)

Because the Poisson bracket obeys the Jacobi identity, the bivector 6" must
satisfy the following condition

00,0 +60 0™ + 070 0" =0. (2.3)
If a Poisson bracket is defined on M, then M is called a Poisson manifold (see
[30] for mathematical details).
Suppose now that the bivector 6% V(x) has an inverse @ (x), ie.

uv
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0w, =5" (2.4)

If differential form a)zéa)w dx" ndx” associated to @, (x) is

uv

nondegenerate (det o, * 0) and closed (dca = 0), then it is called a symplectic

2-form and M - a symplectic manifold. 1t can be verified that the condition
dw =0 is equivalent with the equation (2.3) [22, 23, 30]. In this paper we will
consider some applications which correspond to the case when M is symplectic,
but many general results will refer to Poisson manifolds.

Because the gauge theories involve Lie-valued differential forms such
as gauge potential 1-form 4= 4, (x) T,dx" =A,dx", 4, =4, (x)T ., where
T, are the infinitesimal generators of a symmetry group G, we need to

generalize the definition of the Poisson bracket to differential forms and define
then an associative star product for such cases. Many of these problems were
solved in Ref. [22, 23, 30]. In Refs. [24, 25] we generalized these results to the
case of Lie algebra valued differential forms. This generalization has the effect
that the commutator of differential forms can be a commutator or an
anticommutator, depending on their degrees.

Assuming that 6* ”’(x) is invertible, we can always write the Poisson
bracket {x, dx} in the form [30]
7 vi{_ uov yo
{x ,dx }——(9 I, dx", (2.5)
where I'), are some functions of x transforming like a connection under

general coordinate transformations. As I' ;U is generally not symmetric, on can
use the 1-forms of connection

TU _ T U P 4 _ g pTH

Iy =1, dx", LY =dx’T7,, (2.6)

to define two kinds of covariant derivatives V and V , respectively. The
curvatures for these two connections are

Ry, =0}, -8, +I, I -T.T; . 2.7)
R;pa = 5pr;1 - GJF;/I + F;T r:,-rr F;/I. (2.8)
Because the connection coefficients '), are not symmetric (F =L V‘;) the
symplectic manifold M has also a torsion defined as usually [30]
T!ﬁ, = F;V - l—‘vfl . 2.9

The connection V satisfies the identity [22]
V..V, e =-R, d nija -T2V a, (2.10)

o PHY
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and an analogous formula applies for V. Here, « is an arbitrary differential -
form

1

a =EOtM“_'ﬂka’)c”1 A Adxt (2.11)
and i_o denotes the interior product which maps the k-form « into a (k - 1)—
form
. 1
loa:m(lo‘yzwykdx#z A Adx™ (212)
It has been proven that in order the Poisson bracket satisfies the Leibniz
rule

dif.gl=1\df g}+{f.dg}, (2.13)
the bi-vector 6" (x) must obeys the property [22, 23]

o uv o uv u nov vV gHo _

v, 0" =0,0" +1, 07 +I 0" =0. (2.14)
Thus 6*" is covariant constant under V , and V is named a symplectic
connection, because it annihilates the symplectic 2-form. One can use the
Leibniz condition (2.14) together with the Jacobi identity for the Poisson
bivector 6*" to obtain the cyclic relation for torsion

> 60T =0. (2.15)

(u.v.p)
Note that while this relation shows that that a torsion-free connection identically
satisfies the property (2.15), the Jacobi identity does not require the connection
to be torsionless. Also note that (2.14) and the Jacobi identity for the Poisson
bivector can be combined to obtain the following cyclicity property

D6V 07 =0. (2.16)

(1.v.p)

If in addition to restrictionV ,6*" =0, one imposes V 6“" =0, the torsion
vanishes, T ﬂpv =0, and there is only one covariant derivative V =V . In this

paper, we do not require that V 6" =0,

Now we generalize the Poisson bracket to include differential forms.
Let us consider some arbitrary differential forms «, 3,7 and denote their
,[)’| and |}/| We define then a graded differential

Poisson Poisson algebra on the Poisson manifold M as the set of all differential
forms satisfying the following properties

(i) Bracket degree: |{0{,,B}| :|a| +|,B

degrees respectively by |a

b

B
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(ii) Graded symmetry: {o, B} = (- l)auﬁ‘ﬂ ;

(iii) Graded product rule: {er, By } = {0, B}y + (- lja 1A Blay}:
(iv) Leibniz rule: d{ar, B} = {da, B+ (1) {a,dB);

(v) Graded Jacobi identity:

@ B+ ) VB b+ (B ()= 0.

These properties naturally combine the defining characteristics of differential
forms and the Poisson bracket. The Leibniz rule and the graded Jacobi identity
place strong conditions on the Poisson brackets of differential forms. In fact, the
properties (i) — (v) uniquely determine the form of the Poisson bracket.

Using the graded product rule, we can prove the following general
expression of the Poisson bracket between differential form [22, 23]

. B}=0"V anV B+ (—1)“‘1?‘” A (iﬂa)/\ i.p), 2.17)

where |a| is the degree of the differential form « , and

R = REa nds, RE=0UR, (2.18)

Apo *
It can be proven that in order that (2.17) satisfies the properties of the graded
differential Poisson bracket, the following restrictions on the connection
coefficients I’ ;’V must be imposed [23]

(a) V is symplectic: gﬁﬁ‘”’ =0;
(b) 8" satisfies the Jacobi identity:
00,0 +6"0,0™ + 070 0" =0;

(c) The connection V has vanishing curvature: R oo =05

(d) The curvature R*" is covariant constant: V,R e =0.
As a consequence of these restrictions, the following condition satisfied by the
curvature R*" can be obtained [22, 23]
R (i, Ro7 )+ R (i, R )+ R (i, R =0. (2.19)
Finally, we remark that if a connection exists that satisfies all these
properties, then we have completely determined expression of the Poisson

bracket between two arbitrary differential forms. This bracket is the only
possible bracket between differential forms on a symplectic manifold.

3. Covariant star product

What is generally done to construct a noncommutative gauge theory
and, in general a noncommutative field theory, is to deform the ordinary
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pointwise commutative product among functions or differential forms on space-
time with the introduction of a star product which is noncommutative and
reduces to the usual one in a certain limit. The choice of the star product
compatible with the noncommutativity (2.1) is not unique. In this work we use
the covariant star product defined in Ref. [22] for differential forms and
generalized to the case of Lie algebra valued differential forms in [22] and
which has been generalized to Lie algebra valued differential forms in [25, 26].

The covariant star product between arbitrary differential forms that we
will consider here has the general form

a*lgzaAﬁJri(%jncn(a,ﬁ), (3.1)

where C, (a, ,6') are bilinear differential operators satisfying the generalized
Moyal symmetry [22, 25]

Cn(a’lg): (_ 1)a“ﬁ‘+ncn(ﬁ’a)' (32)
The operator C, coincides with the Poisson bracket, i.e. C, (a, B ) = {a, B } An

expression for Cz(a, ﬂ) has been obtained also in Ref. [22] so that the star
product (2.23) satisfies the property of associativity

(axp)ey=ax(fxy). (33)
In order to simplify presentation and give some simple illustrative examples, we
will consider the case when the symplectic manifold M has only torsion. Since

the curvature R7  is vanishing [see Eq. (2.10)], one obtains the following

vp
relation between the curvature R and the torsion T

RS, =V,T7. (3.4)

uvp

This relation shows that the curvature R7,

vanishes too if the torsion 7.7 is
covariant constant, i.e.
o _
V17 =0. (3.5)
Therefore, if the torsion is covariant constant, the symplectic manifold M has
only torsion but not curvature.
For such a symplectic manifold, the bilinear differential operators

(6 (a, ﬁ) and C, (a, ﬁ) in the star product (3.1) proposed in Ref. [22] reduce
to the simpler forms

Cl(a,ﬂ):{a,ﬂ}:ﬁ“vvﬂa/\vvﬂ, (3.6)
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C, (. B)= %ememvﬂvpa AVV, B+ %(avpvpew +

(3.7)

1 O v
200 lTMj(vvv#a AV, BV, arV.V_f).

We can verify that the covariant star product with torsion defined in (2.27)-
(2.28) is associative [26].

Now, we extend the above covariant star product to the case of Lie
algebra valued differential forms. Suppose that we have an internal gauge group

G whose infinitesimal generators 7, satisfy the algebra

[7.1]=ifiT., ab,c=12,...,m. (3.8)
with the structure constants f," =—f%. If @ =a‘T, and B = B'T, are two
arbitrary such forms, where a“ and f” are ordinary differential forms of

degrees |a| and respectively |,B|, then their covariant star product has the

expression [24]

ax*f=anpf+ 3 ﬁ)nCn a,
p=anp Z( 5] Gl nﬁ) o
—a* AT, +i@j C a8 ),
n=l
where C, (a“, ﬂb) are the bilinear operators given in (3.6) — (3.7) with & and
[ changed in @ and S respectively. It is important to remark that the
operators C, (aa, ﬂb) satisfy the same generalized Moyal symmetry (3.2), i.e.
C,(a,p)= (1) c (B, a"). (3.10)

Tacking into account the graded structure of our Poisson algebra, we
define the commutator of two Lie algebra valued differential forms o = a“T,

and 3= B'T, by
[, p].=a*B—(-1)" gxq. 3.11)

For example, if & and f are Lie algebra valued differential one-forms, we
have

(@ pl=a* A p 1)+ DGl pN )

+[%jzcz(a“,ﬁb)[n,n]+0(h3)

(3.12)
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This result shows that the star commutator of Lie algebra valued differential
forms does not close in general in the Lie algebra but in its universal enveloping
algebra. Exceptions are the unitary groups where this is true. The expressions of

the operators Cl(a”,ﬂb) and Cz(a”,ﬁb) are those given in (3.6) and (3.7)
respectively, with & and f exchanged in a® and .

In the next Section we apply this covariant star product in order to
develop a noncommutative internal gauge theory.

4. Noncommutative gauge theory

We suppose that G is a gauge group with the equations of structure given in
(3.8) and denote the Lie algebra valued infinitesimal parameter by

A=XT,. @A.1)
We use the hat symbol “*” to denote the non-commutative quantities of our
gauge theory. The parameter A is a 0-form, i.e. A* are functions of the
coordinates x* on the symplectic manifold M .

Now, we define the gauge transformation of parameter A of the non-
commutative Lie valued gauge potential

A= A()dx" = A,dx", 4, = A° ()T, (4.2)
by
M=di- i[fl,i]_ : (4.3)
Here we consider the definition of the commutator [a,ﬁ ]* of two arbitrary

differential forms & and £ given in (3.11). Then, using the definition (3.9) of

the covariant star product and the equations of structure (3.8) of the gauge
group, we can write (4.3) as

AR

S =i s itk Lo 1) el 5), ay

where we noted {Ta,Th}z d;,T.. In fact, this notation is valid if the Lie algebra
closes also for anticommutator, as it happens for example in the case of unitary
groups U (N ) . In general, the commutators like [21, iJ* take values in the
enveloping algebra [10]. Therefore, the gauge field A and the parameter/i take

values in this algebra. Let us write for instance A= IZIITI and = /i[TI , then
[ﬁ,i]*z % {21’,2-’}* [1,,7,]+ % [21’,/%’]*{7’,,1,}. (4.5)

Thus, all products of the generators 7, will be necessary in order to close the
enveloping algebra. Its structure can be obtained by successively computing the
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commutators and anticommutators starting from the generators of Lie algebra,
until it closes [31, 32],

. rK K
[TI’TJ]:lfuTK’ {TI’TJ}:dIJTK :
Therefore, in our above notations and in what follows we understand this
structure in general.

The operators Cl(zglh,/i”) and Cz(;lh,/i”) have the expressions [see
Egs. (3.6)-(3.7)]
o\, k)= i j=0mv 2 AV R, (4.6)
G\ )=Lom0v v 1 Av v F (07w o+
2 H P v o 3 P (4 7)

1 oAV b ¢ b e
20" TM)(VVVHA AV, E =V, ANV ).

Here we use the definition of the covariant derivative
v, A =(0,40 -T2 4 Ja = (v, 40 Jax” 4.8)
and Vv/ic = avff is understood.
We define also the curvature 2-form ¥ of the gauge potentials by
F =%dx” /\dxvl:“w =d21—é[21,21]*. 4.9)

Then, using the definition (3.9) of the star product and the property (3.10) of the
bilinear operators C, (a” B ), we obtain from (4.9)

Fr—dit e fod ndc e Sz (it i)

L2 (4.10)
- ETf,;CZ(A”,ACﬁ o)
More explicitly, in terms of components we have
Aa Aa Aa a p AL’ a h a o AC
Fo =V Al =V A+ fr A A + ATTh + Ear,,cc1 (A/’j,AV)
4.11)

2 ~ A
- % feca )+ o).
where we used the definition C, (1211’, 1216): C, (1212, A ) dx" ndx", with
i, 4 )= 009, &b AV _ac .12)

ov?
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(1. a)=Lomorv v it av,v i+ Lovw o0
2 7 (4.13)

1 oAV b “e “b “e
20”0 TMJ(VVV!,A AV, A=V A" AV V 4 )

A

Under the gauge transformation (3.11) the curvature 2-form F
transforms as

§F =i|A.F|.. (4.14)
where we used the Leibniz rule
d(d*ﬁ)zdd*ﬁJr(—l)“‘d*d,@ (4.15)
which we admit to be valid to all orders in 7 . In terms of the components (4.14)
becomes

5= fit i s a2 e d ) o). @ie

In the zeroth order, the formula (4.16) reproduces therefore the result of the
commutative gauge theory

SF! = fLFh X < OF =i[A,F]. (4.17)
Using again the Leibniz rule, we obtain the deformed Bianchi identity
df —i|4,F| =0. (4.18)

If we apply the definition (3.11) of the star commutator, we obtain
af +1fF 4] B aalf )" e, (13“1’,246)}@ cof), @)
or in terms of components
b = [ F A = gdgccl (ﬁ”,AC)—%Z fee, (B 4 )+ o) @20

We remark that in zeroth order we obtain from (4.19) the usual Bianchi identity

dF —i[4,F]=0. (4.21)
In addition, if the gauge group is U (1), the Bianchi identity (4.18) becomes
df =1¢,(4,F)+ o) (4.22)

This result is also in accord with that of Ref. [30].
Having established the previous results, we can construct a
noncommutative Yang-Mills (NCMY) action. We will consider therefore the

case when the gauge group is U(N). Let G** a metric on the noncommutative
space-time M [24]. We suppose that the metric G** belongs to the adjoint
representation of U (l)c UN ) in sense that G*" = G*" I where [ is the unity
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matrix of U (N ) in this representation. Therefore, we consider the components
of G*¥ as Lie algebra-valued 0-forms. The covariant derivative of the metric
G" is
vo Vo vo P v op
vV,G"=0,G"+G"T,) +I,,G7. (4.23)
If G*V is not constant we have to modify it to be a covariant metric

G* for the (NCYM) action [25, 30] in sense that it transforms like £ (see
(4.18))

56m =i|A.6m .. (4.24)
Then, using the definition (3.11) for the * - commutator, we obtain from (4.24)
56 =07V 6o A+0(6’). (4.25)

We can use the Seiberg-Witten map with covariant * - product for a field which
is in the adjoint representation (as we consider to be G*") to obtain [33]

G* = G* — 4977V G* +0(6?), (4.26)
where Ag is the gauge field in the U (l) sector of U(N )

In order to construct the NCYM action for the gauge fields
Az(x), 1=1230,a=0,12,--,N*, we use the definition for the integration

< f > of a function f (or of another quantity) over the noncommutative space M
as (for details see [35])

()=1r()=[d*4Pr(B)(), (4.27)
where B=6" and Pf(B) denotes the Pfaffian of B, i.c. |Pf(Bl = \/det(B).

The notation B =" is in connection with the very important result that for a
D-brane in a B field background (with B constant or not constant), its low
energy effective theory lives on a noncommutative space-time with the Poisson
structure @ = B~ [34, 35, 36]. More exactly, it is shown that the metric G
introduced on the Poisson manifold M is connected with the metric g appearing

in the fundamental string (open or closed) action by relation G = B gB 12,
34, 35].
Now, we define the NCYM action by (see [24, 34])

. 1 A A A A 1/~ A~ oA .

Swem =55 (rlGr FrGxF )=~ (6 5, + G F ). 429)
2g. 4.

where g_is the Yang-Mills gauge coupling constant, and we have used the

normalization property
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1
r(T.T,)= 55‘”’1 : (4.29)
Using the properties of gauge covariance (4.14) and (4.24) for F and
G respectively, we obtain
A A A A a A A\ A ,
8Syem =7 (irlGFGE) )+ ole). 430)
&

Now, since the integral is cyclic in the Poisson limit [34], i.e.
clelGEGE) 2)=0, (4.31)

then the Eq. (4.30) becomes

8 Syepy =0+0(6°).

Therefore, the action S very 18 invariant up to the second order in €. The

expression (4.28) of the action can be further simplified as [24, 34]

n 1 A
Sver = —F<tr(GFGF)> +0(0°)=
f (4.32)
- F<(éﬂpﬁ;vévgﬁudﬂ )> + 0(63)
g
Using the previous results we can obtain solutions for the
noncommutative gauge field equations. An example is given in Section 5 using
the symplectic manifold M endowed with a covariant constant torsion.
We can add, as usually, fields in our noncommutative gauge model. As

an example, we mention the case when the noncommutative U (N ) gauge

theory is coupled to a Higgs multiplet é)(x):é)“(x)T in the adjoint

a

representation. The integral of action for (i)(x) is [37]

S oes = —%gz@r([)ﬂci) £ G [)V(i))> , (4.33)
where

D,d=0,0-igld, 4.

(4.35)

is the noncommutative gauge covariant derivative. Because this derivative is
gauge covariant, in the sense

5(D,®)=i4.D,d|.. (436)
the action § aas 1S invariant as well as S very Up to the second order in 6.

The action of the noncommutative U (N ) coupled to Higgs multiplet é)(x)
reads
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A

Sve = —r;z<zr(él’P ¢ ﬁpv * G x 150” + [)HqA) * G *ﬁv(i))> (4.37)

This action can be used to obtain solutions for the noncommutative version of
the Yang-Mills-Higgs model using the commutative * -product defined on the
manifold M by extending the results of [37] where one uses the usual Moyal * -
product.

5. Example: noncommutative U (2) gauge theory

As a very simple example we consider the Poincaré gauge theory to construct
the manifold M . Then, suppose that we have the gauge fields e: and fix the

gauge a)Zb =0 [38]. We define the connection coefficients

I’ =2°0,¢" (5.1)

uv vou?

where e denotes the inverse of e:. Obviously, the connection I' defined by

these coefficients is not symmetric, i.e. I';, # I’/ . Define then the torsion by

uv
formula
P _TP P
Tyv - F,uv - Fv;l . (52)
In order to simplify the calculation, we consider the case of spherically
symmetry and choose the gauge fields ej, as

1 1
e! =diag| A11,— |, e =diag|—,,1,4], 5.3
4 g{ A} g{ y } (5.3)

where A= A(r) is a function depending only on the radial coordinate r .
Then, denoting the spherical coordinates on M by
(x” )=(r,3, (o,t), #=1230, the non-null components of the connection
coefficients are

A A
r=-—, I ==. 5.4
10 4 n=7 (5.4)

It is easy to see that the only non-null components of the torsion are

Ty =-To="- (5.5)
Also, using the definitions (2.7) and (2.8) of the curvatures, we obtain

- - AA” _ 2A!2

R) =—R’ = R =0, (5.6)

101 — Y10 ~ Ve s Iy
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A s .
and all other components of R; are vanishing. In these expressions, we

denoted the first and second derivatives of A(r) by A" and A" respectively.

A

The vanishing of the curvature R, |

agrees with the constraint imposed on the

connection V .

Introduce then the noncommutative parameters 8”" and suppose that
we choose them so that

0 0 O L
A(r)
( ,,V): 0 0 -b 0 ’ 57)
0 0
b 0 0
A r)
where b is a non-vanishing constant. Then, we have
Vo' =-V0"=0, Vo' =-V§e"= %. (5.8)

This agrees with the constraint (2.14) that " is covariant constant under V.
Finally, if we impose also the condition of vanishing of the curvature

ijp , then from (5.6) we obtain the following differential equation of the

second order for the unknown function A(r):
A4 =247 =0. (5.9)
The solutions of this equation is

1
Alr)= ———— 5.10
(r) Cr+C, (5-10)

where C, and C, are two arbitrary constants of integration. Therefore, in our

simple example, the conditions necessary to define a covariant star product on a
symplectic manifold M completely determine its connection. In addition, it is
very interesting to see that the covariant derivative of the torsion, defined as

v o _ v v mAi A v A v
VﬂTpo _6#Tpd +FﬂﬂTpd _Fp/lTﬂo _Ffprﬂ’ (5.11)
has the following non-null components

A AN _ 2 AIZ
A? '
Then, tacking into account the equation (5.8), we conclude that the torsion is

Vily =-VT;= (5.12)

covariant constant, V. 7" =0, a result which is in concordance with the

u'po
condition (3.5).



66 G. Zet

We develop now a noncommutative U (2) gauge theory on the space-

time manifold M constructed in the previous example. Denote the generators of
U(2) group by T,,a=k,0, with k=1,2,3; here T, = o, (Pauli matrices)

generates the SU(2)-sector and T, = I (the unit matrix) - the U(1)-sector of
the gauge group U (2) These generators satisfy the algebra (3.8), where only
the structure constant f/’k =2¢,; (&, - total antisymmetric Levi-Civita
symbols) of the SU (2)—sector are non-vanishing, the other components of f,
being equal to zero. The anti-commutator {Ta,Tb}z d;,T. also belongs to the
algebra of U(2), where dy. =26,,,d, =2 are the only non-vanishing

components.
We chose the 1-form gauge potential of U (2) of the form [39, 40]

A=uTydt + W(T,d0 —sin OT,dp) + cos O T,dp + VT, dt , (5.13)
where u, w, v are functions depending only on the radial coordinate ». We

consider the metric G, and its inverse G** of the form

. I 5 5.,
GW :dzag(ﬁ,r ,rosin (9,—Nj, (5.14)
and
1 1 1
GﬂV:d. Na_a—a__ 5 5.15
lag( r* r’sin’ @ Nj (5-15)

respectively, where N is also a function depending only on 7. For example,
the following set of functions
2M Q7 +1
u=u0+2,w=0,V=0,N:1——+ 0 >
r r r

(5.16)

(u, being an arbitrary constant) describes a colored black hole in SU (2)—sector
[39, 40]. The metric G, is of Reissner-Nordstrom type with electric charge O

and unit magnetic charge [40]. It is the simplest solution of the Einstein-Yang-
Mills field equations with a nontrivial gauge field.

Imposing then the variational principle 58 ~vern = 0 we can obtain the

noncommutative Yang-Mills field equations and their solutions. However, it is
much simpler and equivalent to use the Seiberg-Witten map and determine

order by order the noncommutative gauge fields zzlﬂ , the field strength F v and

the metric G*" .
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To end this, we denote the noncommutative quantities of our model by
S _ Aa Y u _ ja 7
A=A"T, (the gauge parameter), 4= A, dx" = AT dx" (the 1-form gauge

potential) and G =G (the metric), and expand them as formal power
series in @

i:/ﬂt+ﬂ(l)+ﬂf(2)+“‘, (5.17a)
o W) (2)

A‘U_A‘u_i_Aﬂ +Ay +eee, (517b)
éyv = G" +Gﬂv(1) +G#V(2) 4o (5.17¢)

where the zeroth order terms 4, A, and G, are the ordinary counterparts of

A A A,uv . . . .
A, A, and G"" respectively. Using the Seiberg-Witten map for the

noncommutative gauge theory with covariant star product [33] we obtain the
following expressions for the first order deformations

2(1) :iepa{apﬁ’Aa}’ (5.18)
AS)I—iapa{Apangy'i_Ffw}’ (5.19)
Gyv(l) — _apo'Ag VUGHV . (5.20)

Here we mention that the solution (5.10) and the particular form of the
parameter € introduce in fact three noncommutativity parameters in our model:

C,,C, and b . From now on we denote them by: C, =6, (of dimension T),
C, =6, (of dimension LT ) and b = 6, (dimensionless).

The first order deformations of the field strength can be obtained from
the definition (4.9) by using (5.19):

F“’:—%ep"({Ap,v F, +D,F,|-2{F, .F. }), (521)

uv ot uv o’ uv up?
where
- p p
VUF/U/ _aaF/w - ray va - rm/ Fvyp ’ (522)
is the covariant derivative (it concerns the space-time manifold M ) and
DJF/N = vaFyv - i[Aa’F;th (523)

is the gauge covariant derivative (it concerns the gauge group).
In particular, for the colored black hole solution (5.15) we obtain

AL o _ (0,0,lsin(zg)@,—(uo + g)[l (”o + gjgl + %92 D , (5.24)
2 r)|2 r r

V=0, (5.25)
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0 0 0 B(r)r6,+6,)
R0l _ 0 0 cos(29)8, 0
“ 0 —cos(29)8, 0 0 ’
~B(r)r6,+6,) 0 0 0
(5.26)
where

B(r)= %(2% + 3% (5.27)

U]

and other components of F; " are equal to zero. In the case when v(r) #0,

i.e. the U (l)— sector is not empty, we obtain that the first order deformation

G 2 0, but for simplicity we prefer here to consider only the case of
colored black hole solution.
All these first order deformations vanish if the noncommutativity

parameters 8, 6,, 6, — 0. However, this limit cannot achieved because the

symplectic structure of the space-time M imposes the condition det(@‘ ”’);t 0.

But we can discover the commutative limit considering 7 — 0.

Finally, we mention that colored black holes and their generalizations
with rotation and cosmological term, as well as solutions with cylindrical and
plane symmetries have been also obtained [40]. It would be of interest to extend
these results to the noncommutative theory case.

6. Conclusions and discussions

We constructed a model of noncommutative gauge theory by using a
star product between Lie algebra valued differential forms defined on a Poisson
manifold. We followed the same way as in our recent paper [24]. To simplify
the calculations, we considered a space-time endowed only with torsion. It has
been showed that, in order to satisfy the restrictions imposed by the
associativity property of the covariant star product, the torsion of the space-time

has to be covariant constant, V #]Lg = 0. On the other hand, it has been argued

that a covariant star product defined in the case when the space-time is a
symplectic manifold endowed only with curvature is not possible. This is due to
the restrictions imposed by the associativity property of the covariant star
product which requires also the vanishing curvature. The corresponding
connection is therefore flat symplectic and this reduces the applicability area of
the covariant star product.
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An illustrative example has been presented starting from the
commutative Poincaré gauge theory. Using the gauge fields e, and fixing the

gauge a)zb =0 [38] we defined the non-symmetric connection I';, =e/0 e, .

We deduced that, in this case, the conditions necessary to define a covariant star
product on a symplectic manifold M completely determine its connection.

Some other possibilities of applying this covariant star product have
been also analysed. First, it will be very important to generalize the Seiberg-
Witten map to the case when the ordinary derivatives are replaced with
covariant derivatives and the Moyal star product is the covariant one. Second,
we can try to develop a noncommutative gauge theory of gravity considering
the symplectic manifold M as the background space-time. For such a purpose,
we have to verify if the non-commutative field equations do not impose too

many restrictive conditions on the connection l—fv , in addition to those required

by the existence of the covariant product. However, it remain unsolved the
problem of the gauge group which we can choose. The Poincaré group can not
be used because it does not close with respect to star product. A possibility will
be to choose the group GL(2, C), but in this case we obtain a complex theory of
gravitation [41, 42]. Another possibility is to consider the universal enveloping
of Poincaré group, but this is infinite dimensional and we must find criteria to
reduce the number of the freedom degrees to a finite one. Some possible ideas
are given for the case of SU(N) or GUT theories in Ref. [43], where it is argued
that the infinite number of parameters can in fact all expressed in terms of right
number of classical parameters and fields via the Seiberg-Witten maps.

In a recent paper [44] a similar aim of applying covariant * -products
has been pursued though with a different approach. Specifically, there are
studied covariant * - products on spaces of tensor fields defined over a Fedosov
manifold with a given symplectic structure and a given flat torsionless
symplectic connection.

A. Appendix

Here we present the analytical computing program using the
GRTensorll algebra package, running on the MapleV platform, which we used
to perform all the calculations implied in the example given in Section 5. The
program contains a number of procedures, which allow to calculate: the torsion

R, , the covariant derivatives

P v
and curvature tensors 7, , R, ,

vV.T.,V,RY, ﬁlRif, Vﬂﬁff, %11?5‘7 and V,0",V,0" of the torsion
R’v

P v
T/ , the curvatures R oo

p o and the bivector 6" respectively, the first
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(1)

order quantum deformations Aﬂ(l), Fﬂv(l), G"" of the gauge fields, the

strength tensor field and the metric components respectively. Also, the program
integrates the differential equation resulting from the constraints imposed
symplectic structure and the associativity property of the star product on the
connection.Below we list only a part of program which allows to define and
calculate the quantities specified previously.

Noncommutative gauge theory.mws

> introduce the components of tetrad gauge fields e, and Eu# :

> grdef(" e {"a miu}"};

> grdef(" e {a “miu}");

> define the connection coefficients:

> grdef(" I" {*rho miu niu}:= € {a “rho} * e {*a niu, miu}");

> define the torsion:

> grdef(" T' {*rho miu niu}:=T" {*rho miu niu}-I" {*rho niu miu}");

> define the curvatures:

> grdef(" R {#niu lambda rho sigma}:= I" {*niu sigma lambda, rho}-I" {*niu
rho lambda, sigma}+I" {*niu rho tau} * I" {*tau sigma lambda}- I {"niu
sigma tau} * I" {"tau rho lambda}");

> grdef(’ R {*niu lambda rho sigma}:= I' {*niu lambda sigma, rtho}-I" {*niu
lambda rho, sigma}+I" {"niu tau rho } * I" {"tau lambda sigma}-I" {"niu tau
sigma} * I" {"tau lambda rho}");

> introduce the components of the bivector 0" :

> grdef("theta{"miu "niu}");

DUV _ oA pv .
> define the components R, =60""R, -

> grdef(’ R {"miu “niu rho sigma}:=theta{"miu ~lambda} * R {"niu lambda
rho sigma}");

> define the covariant derivative V , 0*"

> grdef(" DO {lambda “miu “niu}:= theta{"miu “niu, lambda}+I" {"miu sigma
lambda} * theta{"sigma “niu}+ I {*niu sigma lambda} * theta{"miu
“sigmay}’);

> define the covariant derivative Vlﬁff :

> grdef(’ DR {*rho “sigma miu niu lambda}:= R {*rho “sigma miu niu,
lambda}+I" {*rho tau lambda} * R {“tau “sigma miu niu}+ I {"sigma tau
lambda} * R {"rho “tau miu niu}-I" {"tau miu lambda} * R {*rho "sigma tau

niu}-I" {*tau niu lambda} * R {"rho "sigma miu tau}");
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> define the covariant derivative V T, :

> grdef(" DT {lambda “rho miu niu}:=7 {*rho miu niu, lambda}+ [" {*rho
lambda sigma} * T {"sigma miu niu}-I" {"sigma lambda miu} * T {"rho
sigma niu}-I" {"sigma lambda niu} * 7' {*rho miu sigma}");

> introduce the components of the gauge fields AZ :

> ordef(" A {"amiu}");

> define the covariant derivative V A :

> ordef(’ DA {*aniu miu}:= A4 {*a niu, miu}-I" {*rho miu niu} * 4 {*arho}");

> introduce the constant of structure f,. :

> grdef(" f {"abc});

> define the components F :V of the strength tensor field:

> grdef(" F {®a miu niu}:= 4 {"a niu, miu}- 4 {"a miu, niu}- f {"a b
ct* A {"bmiu} 4 {"c miu}");

> define the covariant derivative V F,

> grdef(" DF {*a miu niu sigma}:= F {"a miu niu, sigma}-I[" {*rho sigma
miu} * F {*atho niu}-I" {*rho sigma niu} * F' {"a miu rho}");

> integrate equation for the function A(r):

> ode:=diff(A(r),r,r) * A(r)-2 * (diff(A(r),r))"2;

> dsolve(ode, A(7));

> introduce the anticommutator constants d,, :

> grdef(" d {"abc}");

> define the first order quantum deformation AZ(I) of the gauge field:

> grdef(" 4l {*a miu}:= - theta{*rho “sigma} * 4 {"b rho} * (DA {"c sigma
miu}+ F {"c sigmamiu})* d {"abc}/4);

> introduce the components of the metric G*" -

> grdef(" G {"miu *niu}");

> define the components of AE :

> grdef(" A0 {miu}:=[0,0,0,v(r)]):;

> define the first order quantum deformation G* ),

> grdef(" G1 {"miu “niu}:= - theta{’rho “sigma} * A4 {rho} * DG {"miu
“niu,sigma} );

> define the gauge derivative D F,, of the strength tensor field:

> grdef(C" Dg {"a miu niu sigma}:= DF {"a miu niu, sigma}+ f {"a b
ct* A {"bsigma}* F {"c miuniu}");
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> ordef(" £'1 {*a miu niu}:= -theta{"rho "sigma} * ( A {"b tho} * ( DF {"c miu
niu, sigma}+ Dg {"c miu niu sigma})-2 * F {*b miu rho} * F {*c niu
sigma})* d {*abc}/4;

> calculate the results:

> greale( T(up, dn,dn),R(up, dn,dn,dn), E(up,dn,dn,dn)),

> grealc (DT(dn,up,dn,dn), Dﬁ(up,up,dn,dn,dn), D@(dn,up,up));

> greale (Al(up,dn), Gl(up,up), Fl(up,dn,dn))

> define the first order quantum deformation F ; )
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CAMPURI GAUGE CU SIMETRIE SFERICA PE SPATIUL-TIMP NECOMUTATIV
(Rezumat)

Se construieste un model general de teorie gauge definita pe o varietate simplectica
considerata ca spatiu-timp. In acest scop, se foloseste un produs stea covariant intre
forme diferentiale cu valori in algebra Lie. Se stabilesc constrangerile impuse de
structura simplectica asupra conexiunii spatiului-timp si se verificd proprietatea de
asociativitate a produsului stea. Ca un exemplu, se considera teoria gauge necomutativa
U(2) definita pe o varietate spatiu-timp simplecticd dotatd numai cu torsiune. Se
conchide cd constrangerile impuse de structura simplecticd a spatiului-timp si
proprietatea de asociativitate a produsului stea covariant determind complet conexiunea
spatiului-timp. De asemenea, sunt prezentate cateva comentarii asupra unei teorii gauge
a gravitatiei.



