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Abstract. We construct a general model of gauge theory defined on a 
noncommutative Poisson manifold considered as space-time. For such a purpose 
we use a covariant star product between Lie algebra valued differential forms. 
The constraints imposed by the Poisson structure on the connection of the space-
time are established and the property of associativity of the covariant star 
product is verified. As an example, we consider the noncommutative U(2) gauge 
theory defined on a symplectic space-time manifold endowed only with torsion. 
It is concluded that the constraints imposed by the Poisson structure of the 
space-time and the associativity property of the covariant star product 
completely determine the connection of the space-time. An analytical computing 
program which enables to obtain all results in this example is presented. Some 
comments on the noncommutative gauge theory of gravitation are also made. 
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1. Introduction 

Although in the present it is not known how to describe physics to the 

Planck scale ( m
c

G
LP

35
3

106,1 −×==
h

), there are suggestions that it may be 

described by some generalization of the ordinary spaces which goes under the 
name of noncommutative geometry [1, 2, 3]. This explains the great attention 
given to the noncommutative theories and, in particular, to the gauge theory 
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formulated on a noncommutative spaces-time. One important motivation to 
adopt the idea of noncommutative space-time is the hope that such a framework 
could offer the possibility to develop a quantum theory of gravity or at least to 
give an idea of how this could be achieved [4, 5, 6, 7, 8, 9]. There are two major 
candidates to quantum gravity: string theory [10] and loop quantum gravity 
[11]. Noncommutative geometry and in particular gauge theory of gravity are 
intimately connected with both these approaches and the overlaps are 
considerable [5]. String theory is one of the strongest motivations for 
considering noncommutative space-times geometries and noncommutative 
gravitation. It has been shown, for example, that in the case when the end points 
of strings in a theory of open strings are constrained to move on D branes in a 
constant B-field background and one considers the low-energy limit, then the 
full dynamics of the theory is described by a gauge theory on a noncommutative 
space-time [12]. 

 Recently, it has been argued that the dynamics of the noncommutative 
gravity arising from string theory [13] is much richer than some versions of the 
proposed noncommutative gravity. It is suspected that the reason for this is the 
noncovariance of the Moyal star product under space-time diffeomorphisms 
[15]. A geometrical approach to noncommutative gravity, leading to a general 
theory of noncommutative Riemann surfaces in which the problem of the frame 
dependence of the star product is also recognized, has been proposed in [16]. 

Since the early days of quantum mechanics, the physicists have used 
star products to build noncommutative generalizations of commuting theories 
[17]. The first idea has been to consider the quantization as a deformation of the 
algebra of classical observables of functions on phase space, where the first 
order term ( )hO  is taken to be the classical Poisson bracket [18]. Star products 
have been applied then in many areas of physics, including string theory. 

Starting with the works of Kontsevich [19], Cattaneo and Felder [20] 
and many others, the star product of functions on general Poisson manifolds is 

well known, in standard coordinates on dR , to all orders in the deformation 
parameter. Recently, an explicit form of a covariant star of functions on Poisson 
manifolds with torsion-free linear connection has been constructed up to the 

third order ( )3
hO  [21].  

In order to formulate a noncommutative gauge theory it is necessary to 
generalize the star product to the exterior algebra of differential forms. A 
covariant star product has been defined in Refs. [22, 23] and the result was 
extended to case of Lie algebra valued differential forms in Refs. [24, 25, 26]. It 
has been shown that the graded differential Poisson algebra endows the space-
time manifold with a connection having both curvature and torsion (not 
necessarily torsion-free) [22] and places some constraints upon it. We can try to 
apply the covariant star product to the case when the space-time is a Poisson or 
a symplectic manifold which has only curvature, but the torsion vanishes. Then, 
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the restriction imposed by the associativity property of the covariant star 
product requires also the vanishing curvature. The corresponding connection is 
flat symplectic and this reduces drastically the applicability area of the covariant 
star product. Of course, it is possible to have a manifold having both curvature 
and torsion or only torsion. 
 On the other hand, it is believed that gravity could be quantized if it is 
formulated in terms of Poisson or symplectic geometry rather than Riemannian 
geometry, in the context of emergent gravity [27, 28] (for further developments, 
see [29]). The motivation is that any Poisson manifold can always be quantized 
at least in the context of deformation quantization [19]. In addition, the 
emergent gravity is deeply related to the string theory. Many essential aspects of 
string theory such as AdS/CFT correspondence, open-closed string duality, 
noncommutative geometry, mirror symmetry, etc. have also been realized in the 
context of emergent noncommutative geometry. It is even claimed that string 
theory is simply a “stringy” realization of symplectic or Poisson space-time. 
This argues again why the quantization of gravity seems to dictate a Poisson (or 
symplectic) structure to space-time manifold.  
 

2. Properties of Poisson manifold  

The Poisson bracket between two functions, { }gf , , is very well known 
from the classical mechanics. Its basic properties are 

(1) Skew-symmetry: { } { }fggf ,, −= ; 

(2) Jacobi identity: { }{ } { }{ } { }{ } 0,,,,,, =++ gfhfhghgf ; 

(3) Product rule: { } { } { }hfghgfghf ,,, += . 
In what follows we will consider a noncommutative space-time M endowed 

with the coordinates 3,2,1,0, =µµx  satisfying the commutation relation 

[ ] ( )xixx µννµ θ=, ,    (2.1) 

where ( ) ( )xx νµµν θθ −=  is a Poisson bivector [22, 23, 30]. This Poisson 

bivector ( )xµνθ  is defined by 

   { } gfgf νµ
µνθ ∂∂=, .    (2.2) 

Because the Poisson bracket obeys the Jacobi identity, the bivector µνθ  must 
satisfy the following condition 

  0=∂+∂+∂ µν
ρ

σρσµ
ρ

νρνσ
ρ

µρ θθθθθθ .   (2.3) 

If a Poisson bracket is defined on M, then M is called a Poisson manifold (see 
[30] for mathematical details). 

 Suppose now that the bivector ( )xµνθ  has an inverse ( )xµνω , i.e.  
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µ
νρν

µρ δωθ = .     (2.4) 

If differential form νµ
µνωω dxdx ∧=

2

1
 associated to ( )xµνω  is 

nondegenerate ( )0det ≠µνω  and closed ( )0=ωd , then it is called a symplectic 

2-form and M  - a symplectic manifold. It can be verified that the condition 
0=ωd  is equivalent with the equation (2.3) [22, 23, 30]. In this paper we will 

consider some applications which correspond to the case when M is symplectic, 
but many general results will refer to Poisson manifolds. 
 Because the gauge theories involve Lie-valued differential forms such 

as gauge potential 1-form ( ) ( ) a

a

a

a TxAAdxAdxTxAA µµ
µ

µ
µ

µ === , , where 

aT  are the infinitesimal generators of a symmetry group G, we need to 

generalize the definition of the Poisson bracket to differential forms and define 
then an associative star product for such cases. Many of these problems were 
solved in Ref. [22, 23, 30]. In Refs. [24, 25] we generalized these results to the 
case of Lie algebra valued differential forms. This generalization has the effect 
that the commutator of differential forms can be a commutator or an 
anticommutator, depending on their degrees. 

 Assuming that ( )xµνθ  is invertible, we can always write the Poisson 

bracket { }dxx,  in the form [30] 

{ } ρν
σρ

µσνµ θ dxdxx Γ−=, ,   (2.5) 

where ν
ρσΓ  are some functions of x  transforming like a connection under 

general coordinate transformations. As ν
ρσΓ  is generally not symmetric, on can 

use the 1-forms of connection 
µ
ρν

ρµ
ν

ρµ
νρ

µ
ν Γ=ΓΓ=Γ dxdx ,

~
,  (2.6) 

to define two kinds of covariant derivatives ∇
~

 and ∇ , respectively. The 
curvatures for these two connections are 

τ
λρ

ν
τσ

τ
λσ

ν
τρ

ν
λρσ

ν
λσρ

ν
λρσ ΓΓ−ΓΓ+Γ∂−Γ∂=R

~
,  (2.7) 

τ
ρλ

ν
στ

τ
σλ

ν
ρτ

ν
ρλσ

ν
σλρ

ν
λρσ ΓΓ−ΓΓ+Γ∂−Γ∂=R .  (2.8) 

Because the connection coefficients ρ
µνΓ  are not symmetric ( )ρ

νµ
ρ
µν Γ≠Γ  the 

symplectic manifold M  has also a torsion defined as usually [30] 
ρ

νµ
ρ
µν

ρ
µν Γ−Γ=T .     (2.9) 

The connection ∇  satisfies the identity [22] 

[ ] ααα ρ
ρ

µνσ
ρσ

ρµννµ ∇−∧−=∇∇ TidxR, ,  (2.10) 
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and an analogous formula applies for ∇
~

. Here, α  is an arbitrary differential k-
form 

   k

k
dxdx

k

µµ
µµαα ∧⋅⋅⋅∧= 1

1....!

1
,   (2.11) 

and ασi  denotes the interior product which maps the k-form α  into a ( )1−k -

form 

   
( )

k

k
dxdx

k
i

µµ
µµσσ αα ∧⋅⋅⋅∧

−
= 2

2 ....!1

1
.  (2.12) 

 It has been proven that in order the Poisson bracket satisfies the Leibniz 
rule 
   { } { } { }dgfgdfgfd ,,, += ,    (2.13) 

the bi-vector ( )xµνθ  must obeys the property [22, 23] 

   0
~

≡Γ+Γ+∂=∇ µσν
σρ

σνµ
σρ

µν
ρ

µν
ρ θθθθ . (2.14) 

Thus µνθ  is covariant constant under ∇
~

, and ∇
~

 is named a symplectic 

connection, because it annihilates the symplectic 2-form. One can use the 
Leibniz condition (2.14) together with the Jacobi identity for the Poisson 

bivector  µνθ  to obtain the cyclic relation for torsion 

   
( )

0
,,

=∑ λ
ρσ

νσ

ρνµ

µρθθ T .    (2.15) 

Note that while this relation shows that that a torsion-free connection identically 
satisfies the property (2.15), the Jacobi identity does not require the connection 
to be torsionless. Also note that (2.14) and the Jacobi identity for the Poisson 
bivector can be combined to obtain the following cyclicity property 

( )
0

,,

=∇∑ νσ
ρ

ρνµ

µρ θθ .    (2.16) 

If in addition to restriction 0
~

=∇ µν
ρθ , one imposes 0=∇ µν

ρθ , the torsion 

vanishes, 0=ρ
µνT , and there is only one covariant derivative ∇=∇

~
. In this 

paper, we do not require that 0=∇ µν
ρθ . 

 Now we generalize the Poisson bracket to include differential forms. 
Let us consider some arbitrary differential forms γβα ,,  and denote their 

degrees respectively by βα ,  and γ . We define then a graded differential 

Poisson Poisson algebra on the Poisson manifold M  as the set of all differential 
forms satisfying the following properties 

(i) Bracket degree: { } βαβα +=, ; 
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(ii) Graded symmetry: { } ( ) 11, +−= βαβα ; 

(iii) Graded product rule: { } { } ( ) { }γαβγβαβγα βα ,1,, −+= ; 

(iv) Leibniz rule: { } { } ( ) { }βαβαβα α
ddd ,1,, −+= ; 

(v) Graded Jacobi identity: 

{ }{ } ( ) ( ) { }{ } ( ) ( ) { }{ } 0,,1,,1,, =−+−+ ++ αγβαγβγβα βαγγβα
. 

These properties naturally combine the defining characteristics of differential 
forms and the Poisson bracket. The Leibniz rule and the graded Jacobi identity 
place strong conditions on the Poisson brackets of differential forms. In fact, the 
properties (i) – (v) uniquely determine the form of the Poisson bracket. 
 Using the graded product rule, we can prove the following general 
expression of the Poisson bracket between differential form [22, 23] 

{ } ( ) ( ) ( )βαβαθβα νµ
µνα

νµ
µν iiR ∧∧−+∇∧∇=

~
1, ,  (2.17) 

where α  is the degree of the differential form α , and 

ν
λρσ

µλµν
ρσ

σρµν
ρσ

µν θ RRdxdxRR
~~

,
~

2

1~
=∧= .   (2.18) 

It can be proven that in order that (2.17) satisfies the properties of the graded 
differential Poisson  bracket, the following restrictions on  the connection 

coefficients ρ
µνΓ  must be imposed [23] 

 (a) ∇
~

 is symplectic: 0
~

=∇ µν
ρθ ; 

(b) µνθ  satisfies the Jacobi identity: 

0=∂+∂+∂ µν
ρ

σρσµ
ρ

νρνσ
ρ

µρ θθθθθθ ; 

 (c) The connection  ∇  has vanishing curvature: 0=ν
λρσR ; 

 (d) The curvature µνR
~

 is covariant constant: 0
~

=∇ µν
ρσλR . 

As a consequence of these restrictions, the following condition satisfied by the 

curvature µνR
~

 can be obtained [22, 23] 

  ( ) ( ) ( ) 0
~~~~~~

=++ µρ
ν

σνσµ
ν

ρνρσ
ν

µν RiRRiRRiR .  (2.19) 

 Finally, we remark that if a connection exists that satisfies all these 
properties, then we have completely determined expression of the Poisson 
bracket between two arbitrary differential forms. This bracket is the only 
possible bracket between differential forms on a symplectic manifold. 

3. Covariant star product  

What is generally done to construct a noncommutative gauge theory 
and, in general a noncommutative field theory, is to deform the ordinary 
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pointwise commutative product among functions or differential forms on space-
time with the introduction of a star product which is noncommutative and 
reduces to the usual one in a certain limit. The choice of the star product 
compatible with the noncommutativity (2.1) is not unique. In this work we use 
the covariant star product defined in Ref. [22] for differential forms and 
generalized to the case of Lie algebra valued differential forms in [22] and 
which has been generalized to Lie algebra valued differential forms in [25, 26]. 

The covariant star product between arbitrary differential forms that we 
will consider here has the general form 

( )βαβαβα ,
21

n

n

n

C
i∑

∞

=








+∧=∗
h

,  (3.1) 

where ( )βα ,nC  are bilinear differential operators satisfying the generalized 

Moyal symmetry [22, 25] 

( ) ( ) ( )αββα βα ,1, n

n

n CC
+−= .   (3.2) 

The operator 1C  coincides with the Poisson bracket, i.e. ( ) { }βαβα ,,1 =C . An 

expression for ( )βα ,2C  has been obtained also in Ref. [22] so that the star 
product (2.23) satisfies the property of associativity 

( ) ( )γβαγβα ∗∗=∗∗ .   (3.3) 
In order to simplify presentation and give some simple illustrative examples, we 
will consider the case when the symplectic manifold M  has only torsion. Since 

the curvature σ
µνρR  is vanishing [see Eq. (2.10)], one obtains the following 

relation between the curvature R
~

 and the torsion T  

   σ
νρµ

σ
µνρ TR ∇=

~
.      (3.4) 

This relation shows that the curvature σ
µνρR

~
 vanishes too if the torsion σ

νρT  is 

covariant constant, i.e. 

   0=∇ σ
νρµT .      (3.5) 

Therefore, if the torsion is covariant constant, the symplectic manifold M has 
only torsion but not curvature. 

For such a symplectic manifold, the bilinear differential operators 
( )βα ,1C  and ( )βα ,2C  in the star product (3.1) proposed in Ref. [22] reduce 

to the simpler forms 

  ( ) { } βαθβαβα νµ
µν ∇∧∇== ,,1C ,   (3.6) 
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( ) (

( ) .
2

1
3

1

2

1
,2

βαβαθθ

θθβαθθβα

σνµσµν
ν
ρλ

σλµρ

µσ
ρ

νρ
σνρµ

ρσµν

∇∇∧∇−∇∧∇∇




+∇+∇∇∧∇∇=

T

C

 (3.7) 

We can verify that the covariant star product with torsion defined in (2.27)-
(2.28) is associative [26].  

 Now, we extend the above covariant star product to the case of Lie 
algebra valued differential forms. Suppose that we have an internal gauge group 
G  whose infinitesimal generators aT  satisfy the algebra 

   [ ] mcbaTfiTT c

c

abba ,....,2,1,,,, == .  (3.8) 

with the structure constants a

cb

a

bc ff −= . If a

aTαα =  and b

bTββ =  are two 

arbitrary such forms, where aα  and bβ  are ordinary differential forms of 

degrees α  and respectively β , then their covariant star product has the 

expression [24] 

( )

( ) ba

ba

n

n

n

ba

ba

n

n

n

TTC
i

TT

C
i

βαβα

βαβαβα

,
2

,
2

1

1

∑

∑
∞

=

∞

=








+∧=








+∧=∗

h

h

, (3.9) 

where ( )ba

nC βα ,  are the bilinear operators given in (3.6) – (3.7) with α  and 

β  changed in aα  and bβ  respectively. It is important to remark that the 

operators ( )ba

nC βα ,  satisfy the same generalized Moyal symmetry (3.2), i.e.  

  ( ) ( ) ( )ab

n

nba

n CC αββα βα ,1, +−= .   (3.10) 

 Tacking into account the graded structure of our Poisson algebra, we 

define the commutator of two Lie algebra valued differential forms a

aTαα =  

and b

bTββ =  by 

[ ] ( ) αββαβα βα ∗−−∗=∗ 1, .    (3.11) 

For example, if α  and β  are Lie algebra valued differential one-forms, we 
have 

    

[ ] [ ] ( ){ }

( )[ ] ( )3
2

2

1

,,
2

,,
2

,,

h
h

h

OTTC
i

TTC
i

TT

ba

ba

ba

ba

ba

ba

+






+

+∧=∗

βα

βαβαβα

.   (3.12) 
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This result shows that the star commutator of Lie algebra valued differential 
forms does not close in general in the Lie algebra but in its universal enveloping 
algebra. Exceptions are the unitary groups where this is true. The expressions of 

the operators ( )baC βα ,1  and ( )baC βα ,2  are those given in (3.6) and (3.7) 

respectively, with α  and β  exchanged in aα  and bβ . 
In the next Section we apply this covariant star product in order to 

develop a noncommutative internal gauge theory. 

4. Noncommutative gauge theory 

We suppose that G is a gauge group with the equations of structure given in 
(3.8) and denote the Lie algebra valued infinitesimal parameter by 

   a

aTλλ ˆˆ = .     (4.1) 

We use the hat symbol “^” to denote the non-commutative quantities of our 

gauge theory. The parameter λ̂  is a 0-form, i.e. aλ̂  are functions of the 

coordinates µx  on the symplectic manifold M .  

Now, we define the gauge transformation of parameter λ̂  of the non-
commutative Lie valued gauge potential 

( ) ( ) a

a

a

a TxAAdxAdxTxAA µµ
µ

µ
µ

µ
ˆˆ,ˆˆˆ === ,   (4.2) 

by 

   [ ]∗−= λλδ ˆ,ˆˆˆˆ AidA .     (4.3) 

Here we consider the definition of the commutator [ ]∗βα ,  of two arbitrary 

differential forms α  and β  given in (3.11). Then, using the definition (3.9) of 
the covariant star product and the equations of structure (3.8) of the gauge 
group, we can write (4.3) as 

 ( ) ( )cba

bc

cba

bc

cba

bc

aa ACfACdAfdA λλλλδ ˆ,ˆ
4

ˆ,ˆ
2

ˆˆˆˆˆ
2

2

1

hh
−++= , (4.4) 

where we noted { } c

c

abba TdTT =, . In fact, this notation is valid if the Lie algebra 

closes also for anticommutator, as it happens for example in the case of unitary 

groups ( )NU . In general, the commutators like [ ]∗λ,A ˆˆ take values in the 

enveloping algebra [10]. Therefore, the gauge field Â  and the parameter λ̂ take 

values in this algebra. Let us write for instance I

ITAA ˆˆ =  and I

ITλλ ˆˆ = , then 

  [ ] { } [ ] [ ] { }JI

JI

JI

JI TTATTAλ,A ,ˆ,ˆ
2

1
,ˆ,ˆ

2

1ˆˆ
∗∗∗ += λλ . (4.5) 

Thus, all products of the generators IT  will be necessary in order to close the 
enveloping algebra. Its structure can be obtained by successively computing the 
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commutators and anticommutators starting from the generators of Lie algebra, 
until it closes [31, 32], 

  [ ] { } K

K

IJJIK

K

IJJI TdTTTfiTT == ,,,  . 

Therefore, in our above notations and in what follows we understand this 
structure in general. 

The operators ( )cbAC λ̂,ˆ
1  and ( )cbAC λ̂,ˆ

2  have the expressions [see 
Eqs. (3.6)-(3.7)] 

  ( ) { } cbcbcb AAAC λθλλ νµ
µν ˆˆˆ,ˆˆ,ˆ

1 ∇∧∇=≡ ,   (4.6) 

( ) (

( ) .ˆˆˆˆ
2

1
3

1ˆˆ
2

1ˆ,ˆ
2

cbcb

cbcb

AAT

AAC

λλθθ

θθλθθλ

σνµσµν
ν
ρλ

σλµρ

µσ
ρ

νρ
σνρµ

ρσµν

∇∇∧∇−∇∧∇∇




+∇+∇∇∧∇∇=
(4.7) 

Here we use the definition of the covariant derivative 

( ) ( ) ν
νµ

ν
ρ

ρ
µννµµ dxAdxAAA aaaa ˆˆˆˆ ∇≡Γ−∂=∇   (4.8) 

and cc λλ νν
ˆˆ ∂≡∇  is understood.  

 We define also the curvature 2-form F̂  of the gauge potentials by 

   [ ]∗−=∧= AA
i

AdFdxdxF ˆ,ˆ
2

ˆˆ
2

1ˆ
µν

νµ .   (4.9) 

Then, using the definition (3.9) of the star product and the property (3.10) of the 

bilinear operators ( )ba

nC βα , , we obtain from (4.9) 

 

( )

( ) ( )3
2

2

1

ˆ,ˆ
42

1

ˆ,ˆ
22

1ˆˆ
2

1ˆˆ

h
h

h

OAACf

AACdAAfAdF

cba

bc

cba

bc

cba

bc

aa

+−

+∧+=
.   (4.10) 

More explicitly, in terms of components we have 

   

( )

( ) ( ) ,ˆ,ˆ
4

ˆ,ˆ
2

ˆˆˆˆˆ

3
2

2

1

h
h

h

OAACf

AACdTAAAfAAF

cba

bc

cba

bc

acba

bc

aaa

+−

+++∇−∇=

νµ

νµ
ρ

µνρνµµννµµν

 (4.11) 

where we used the definition ( ) ( ) νµ
νµ dxdxAACAAC cb

n

cb

n ∧= ˆ,ˆˆ,ˆ , with 

 ( ) cbcb AAAAC νσµρ
ρσ

νµ θ ∇∧∇≡ ˆ,ˆ
1 ,    (4.12) 
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( ) (

( ) .ˆˆˆˆ
2

1
3

1ˆˆ
2

1ˆ,ˆ
2

cbcb

cbcb

AAAAT

AAAAC

σνµσµν
ν
ρλ

σλµρ

µσ
ρ

νρ
σνρµ

ρσµν

θθ

θθθθ

∇∇∧∇−∇∧∇∇




+∇+∇∇∧∇∇=
(4.13) 

 Under the gauge transformation (3.11) the curvature 2-form F̂  
transforms as 

    [ ]∗= FiF ˆ,ˆˆˆ λδ ,    (4.14) 
where we used the Leibniz rule  

   ( ) ( ) βαβαβα α ˆˆ1ˆˆˆˆ ddd ∗−+∗=∗   (4.15) 

which we admit to be valid to all orders in h . In terms of the components (4.14) 
becomes 

 ( ) ( ) ( )3
2

2

1
ˆ,ˆ

4
ˆ,ˆ

2
ˆˆˆˆ h

hh
OFCfFCdFfF cba

bc

cba

bc

cba

bc

a +−+= λλλδ . (4.16) 

In the zeroth order, the formula (4.16) reproduces therefore the result of the 
commutative gauge theory 

   cba

bc

a FfF λδ µνµν =    [ ]FiF ,λδ =⇔ .  (4.17) 

 Using again the Leibniz rule, we obtain the deformed Bianchi identity 

   [ ] 0ˆ,ˆˆ =− ∗FAiFd .    (4.18) 
If we apply the definition (3.11) of the star commutator, we obtain 

    [ ] ( ) ( ) ( )3
2

2

1
ˆ,ˆ

4
ˆ,ˆ

2
ˆ,ˆˆ h

hh
OTAFCfAFCdAFiFd a

cba

bc

cba

bc +







−=+ , (4.19) 

or in terms of components 

        ( ) ( ) ( )3
2

2

1
ˆ,ˆ

4
ˆ,ˆ

2
ˆˆˆ h

hh
OAFCfAFCdAFfFd cba

bc

cba

bc

cba

bc

a +−=∧−   (4.20) 

We remark that in zeroth order we obtain from (4.19) the usual Bianchi identity 
   [ ] 0, =− FAidF .    (4.21) 

In addition, if the gauge group is ( )1U , the Bianchi identity (4.18) becomes 

  ( ) ( )3
1

ˆ,ˆˆ hh OFACFd +=     (4.22) 
This result is also in accord with that of Ref. [30]. 

Having established the previous results, we can construct a 
noncommutative Yang-Mills (NCMY) action. We will consider therefore the 

case when the gauge group is U(N). Let µνG  a metric on the noncommutative 

space-time M [24]. We suppose that the metric µνG  belongs to the adjoint 

representation of ( ) ( )NUU ⊂1  in sense that IGG µνµν =  where I is the unity 



62                            G. Zet  
 

 

 

matrix of ( )NU  in this representation. Therefore, we consider the components 

of µνG  as Lie algebra-valued 0-forms. The covariant derivative of the metric 
µνG  is 

   σρν
µσ

ρ
µσ

νσνρ
µ

νρ
µ GGGG Γ+Γ+∂=∇ .  (4.23) 

 If µνG  is not constant we have to modify it to be a covariant metric 
µνĜ  for the (NCYM) action [25, 30] in sense that it transforms like F̂  (see 

(4.18)) 

   [ ]∗= µνµν λδ GiG ˆ,ˆˆˆ .    (4.24) 
Then, using the definition (3.11) for the ∗ - commutator, we obtain from (4.24) 

   ( )3ˆˆˆˆ θλθδ σ
µν

ρ
ρσµν OGG +∂∇= .  (4.25) 

We can use the Seiberg-Witten map with covariant∗ - product for a field which 

is in the adjoint representation (as we consider to be µνG ) to obtain [33] 

   ( )20ˆ θθ µν
σ

ρσ
ρ

µνµν OGAGG +∇−= ,  (4.26) 

where 0
ρA  is the gauge field in the ( )1U  sector of ( )NU . 

 In order to construct the NCYM action for the gauge fields 

( ) 2,,2,1,0,0,3,2,1, NaxAa ⋅⋅⋅==µµ , we use the definition for the integration 

f  of a function f (or of another quantity) over the noncommutative space M 

as (for details see [35]) 

   ( ) ( ) ( )⋅=⋅≡⋅ ∫ BPfxdTr 4 ,   (4.27) 

where 1−=θB  and ( )BPf  denotes the Pfaffian of B , i.e. ( ) ( )BBPf det= . 

The notation 1−=θB  is in connection with the very important result that for a 
D-brane in a B field background (with B constant or not constant), its low 
energy effective theory lives on a noncommutative space-time with the Poisson 

structure 1−= Bθ  [34, 35, 36]. More exactly, it is shown that the metric G 
introduced on the Poisson manifold M is connected with the metric g appearing 

in the fundamental string (open or closed) action by relation 11 −−= BgBG  [12, 
34, 35].  
 Now, we define the NCYM action by (see [24, 34]) 

( ) ( )σµ
νσ

ρν
µρ FGFG

g
FGFGtr

g
S

cc

NCYM
ˆˆˆˆ

4

1ˆˆˆˆ
2

1ˆ
22 ∗∗∗−=∗∗∗−= ,   (4.28) 

where cg is the Yang-Mills gauge coupling constant, and we have used the 

normalization property  



                                               Bul. Inst. Polit. Iaşi, t. LV (LIX), f. 4, 2010                               63                       
 

 

 

  ( ) .
2

1
ITTtr abba δ=      (4.29) 

 Using the properties of gauge covariance (4.14) and (4.24) for F̂ and 

Ĝ  respectively, we obtain 

  ( )( ) ( )3
12

ˆ,ˆˆˆˆ
4

ˆˆ θλδ OFGFGtrC
g

S
c

NCYM +−=
h

.  (4.30) 

Now, since the integral is cyclic in the Poisson limit [34], i.e. 

   ( )( ) 0ˆ,ˆˆˆˆ
1 =λFGFGtrC ,    (4.31) 

then the Eq. (4.30) becomes 

   ( )30ˆˆ θδ OSNCYM += .     

Therefore, the action NCYMŜ  is invariant up to the second order in θ . The 

expression (4.28) of the action can be further simplified as [24, 34] 

( ) ( )

( ) ( )3
2

3
2

ˆˆˆˆ
4

1

ˆˆˆˆ
2

1ˆ

θ

θ

σµ
νσ

ρν
µρ OFGFG

g

OFGFGtr
g

S

a

a

NCYM

+−

=+−=

  (4.32) 

 Using the previous results we can obtain solutions for the 
noncommutative gauge field equations. An example is given in Section 5 using 
the symplectic manifold M endowed with a covariant constant torsion.  
 We can add, as usually, fields in our noncommutative gauge model. As 
an example, we mention the case when the noncommutative ( )NU  gauge 

theory is coupled to a Higgs multiplet ( ) ( ) a

a Txx Φ=Φ ˆˆ  in the adjoint 

representation. The integral of action for ( )xΦ̂  is [37] 

  ( )Φ∗∗Φ−= ˆˆˆˆˆ
4

1ˆ
2 ν

µν
µ DGDtr

g
SHIGGS ,  (4.33) 

where 

  [ ]∗Φ−Φ∂=Φ µµµ AigD ˆ,ˆˆˆˆ     (4.35) 

is the noncommutative gauge covariant derivative. Because this derivative is 
gauge covariant, in the sense 

  ( ) [ ]∗Φ=Φ ˆˆ,ˆˆˆˆ
µµ λδ DiD ,    (4.36) 

the action HIGGSŜ  is invariant as well as NCYMŜ  up to the second order in θ . 

The action of the noncommutative ( )NU  coupled to Higgs multiplet ( )xΦ̂  
reads 
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 ( )Φ∗∗Φ+∗∗∗−= ˆˆˆˆˆˆˆˆ
4

1ˆ
2 ν

µν
µσµ

νσ
ρν

µρ DGDFGFGtr
g

SNC  (4.37) 

This action can be used to obtain solutions for the noncommutative version of 
the Yang-Mills-Higgs model using the commutative ∗ -product defined on the 
manifold M by extending the results of [37] where one uses the usual Moyal ∗ -
product.  

5. Example: noncommutative ( )2U  gauge theory 

As a very simple example we consider the Poincaré gauge theory to construct 

the manifold M . Then, suppose that we have the gauge fields aeµ  and fix the 

gauge 0=ab

µω  [38]. We define the connection coefficients 

   a

a ee µν
ρρ

µν ∂=Γ ,     (5.1) 

where ρ
ae  denotes the inverse of aeµ . Obviously, the connection Γ  defined by 

these coefficients is not symmetric, i.e. ρ
νµ

ρ
µν Γ≠Γ . Define then the torsion by 

formula 

   ρ
νµ

ρ
µν

ρ
µν Γ−Γ=T .    (5.2) 

In order to simplify the calculation, we consider the case of spherically 

symmetry and choose the gauge fields aeµ  as 

  




=




= A
A

diage
A

Adiage a

a ,1,1,
1

,
1

,1,1, µ
µ ,   (5.3)  

where   ( )rAA =  is a function depending only on the radial coordinate r . 
Then, denoting the spherical coordinates on M by 

( ) ( ) 0,3,2,1,,,, == µϕϑµ trx , the non-null components of the connection 
coefficients are 

  
A

A

A

A ′
=Γ

′
−=Γ 1

11
0

10 , .     (5.4) 

It is easy to see that the only non-null components of the torsion are 

  
A

A
TT

′
=−= 0

10
0

01 .     (5.5) 

Also, using the definitions (2.7) and (2.8) of the curvatures, we obtain 

  ,0,
2~~

2

2
0

110
0

101 =
′−′′

=−= λ
µνρR

A

AAA
RR    (5.6) 
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and all other components of λ
µνρR

~
 are vanishing. In these expressions, we 

denoted the first and second derivatives of ( )rA  by A′  and A′′  respectively. 

The vanishing of the curvature λ
µνρR  agrees with the constraint imposed on the 

connection  ∇  . 

Introduce then the noncommutative parameters µνθ  and suppose that 
we choose them so that 

   ( )
( )

( ) 





















−

−

=

000
1

000

000

1
000

rA

b

b
rA

µνθ ,  (5.7) 

where b is a non-vanishing constant. Then, we have 

  2
10

1
01

1
10

1
01

1 ,0
~~

A

A′
=−∇=∇=∇−=∇ θθθθ .  (5.8)  

This agrees with the constraint (2.14) that µνθ  is covariant constant under ∇
~

.  
Finally, if we impose also the condition of vanishing of the curvature 

λ
µνρR , then from (5.6) we obtain the following differential equation of the 

second order for the unknown function ( )rA : 

  02 2 =′−′′ AAA .     (5.9) 
The solutions of this equation is 

   ( )
21

1

CrC
rA

+
−= ,    (5.10) 

where 1C  and 2C  are two arbitrary constants of integration. Therefore, in our 
simple example, the conditions necessary to define a covariant star product on a 
symplectic manifold M  completely determine its connection. In addition, it is 
very interesting to see that the covariant derivative of the torsion, defined as 

  ν
ρλ

λ
σµ

ν
λσ

λ
ρµ

λ
ρσ

ν
λµ

ν
ρσµ

ν
ρσµ TTTTT Γ−Γ−Γ+∂=∇ ,   (5.11) 

 has the following non-null components 

   2

2
0

101
0

011

2

A

AAA
TT

′−′′
=−∇=∇ .    (5.12) 

Then, tacking into account the equation (5.8), we conclude that the torsion is 

covariant constant, 0=∇ ν
ρσµT , a result which is in concordance with the 

condition (3.5). 
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We develop now a noncommutative ( )2U  gauge theory on the space-

time manifold M constructed in the previous example. Denote the generators of 
( )2U  group by 0,, kaTa = , with 3,2,1=k ; here kkT σ= (Pauli matrices) 

generates the ( )2SU -sector and IT =0  (the unit matrix)  - the U(1)-sector of 

the gauge group ( )2U . These generators satisfy the algebra (3.8), where only 

the structure constant ijk

i

jkf ε2=  ( ijkε - total antisymmetric Levi-Civita 

symbols) of the ( )2SU -sector are non-vanishing, the other components of a

bcf  

being equal to zero. The anti-commutator { }
c

c

abba TdTT =,  also belongs to the 

algebra of ( )2U , where 2,2 0
0 == a

bbcbc dd δ  are the only non-vanishing 

components. 
 We chose the 1-form gauge potential of ( )2U  of the form [39, 40] 

 ( ) dtTdTdTdTwdtuTA 03123 vcossin ++−+= ϕθϕθθ , (5.13) 

where v,, wu  are functions depending only on the radial coordinate r . We 

consider the metric µνG  and its inverse µνG of the form 








 −= Nrr
N

diagG ,sin,,
1 222 θµν ,   (5.14) 

and 

   






 −=
Nrr

NdiagG
1

,
sin

1
,

1
, 222 θ

µν ,    (5.15) 

respectively, where N  is also a function depending only on r . For example, 
the following set of functions 

  2

2

0

12
1,0v,0,

r

Q

r

M
Nw

r

Q
uu

+
+−===+=  (5.16) 

( 0u  being an arbitrary constant) describes a colored black hole in ( )2SU -sector 

[39, 40]. The metric µνG  is of Reissner-Nordström type with electric charge Q  

and unit magnetic charge [40]. It is the simplest solution of the Einstein-Yang-
Mills field equations with a nontrivial gauge field. 

 Imposing then the variational principle 0ˆˆ =NCYMSδ  we can obtain the 

noncommutative Yang-Mills field equations and their solutions. However, it is 
much simpler and equivalent to use the Seiberg-Witten map and determine 

order by order the noncommutative gauge fields µÂ , the field strength µνF̂ and 

the metric µνĜ . 
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 To end this, we denote the noncommutative quantities of our model by 

a

aTλλ ˆˆ =  (the gauge parameter), µ
µ

µ
µ dxTAdxAA a

aˆˆˆ == (the 1-form gauge 

potential) and IGG µνµν ˆˆ =  (the metric), and expand them as formal power 
series in θ  

  ( ) ( ) ⋅⋅⋅+++= 21ˆ λλλλ ,               (5.17a) 

  ( ) ( ) ⋅⋅⋅+++= 21ˆ
µµµµ AAAA ,               (5.17b) 

  ( ) ( ) ⋅⋅⋅+++= 21ˆ µνµνµνµν GGGG ,              (5.17c) 
where the zeroth order terms λ , µA  and µνG  are the ordinary counterparts of 

λ̂ , µÂ  and µνĜ  respectively. Using the Seiberg-Witten map for the 

noncommutative gauge theory with covariant star product [33] we obtain the 
following expressions for the first order deformations 

  ( ) { }σρ
ρσ λθλ A,

4

11 ∂= ,     (5.18) 

  ( ) { }σµµσρ
ρσ

µ θ FAAA +∇−= ,
4

11 ,   (5.19) 

  ( ) µν
σρ

ρσµν θ GAG ∇−= 01 .    (5.20) 

Here we mention that the solution (5.10) and the particular form of the 
parameter θ  introduce in fact three noncommutativity parameters in our model: 

1C , 2C  and b . From now on we denote them by: 11 θ=C  (of dimension T ), 

22 θ=C  (of dimension LT ) and 3θ=b  (dimensionless).  

The first order deformations of the field strength can be obtained from 
the definition (4.9) by using (5.19): 

  ( ) { } { }( )νσµρµνσµνσρ
ρσ

µν θ FFFDFAF ,2,
4

11 −+∇−= , (5.21) 

where 

  µρ
ρ
σνρν

ρ
σµµνσµνσ FFFF Γ−Γ−=∂∇ ,   (5.22) 

is the covariant derivative (it concerns the space-time manifold M ) and  
  [ ]µνσµνσµνσ FAiFFD ,−∇=     (5.23) 

is the gauge covariant derivative (it concerns the gauge group). 
 In particular, for the colored black hole solution (5.15) we obtain  

         ( ) ( ) 















+







 +






 +−= 221003
1

0

3

2

1
,2sin

2

1
,0,0 θθθϑ

r

Q

r

Q
u

r

Q
uA

a , (5.24) 

  ( ) 01 =µνG ,      (5.25) 
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( )

( )( )
( )

( )
( )( ) 


















+−

−

+

=

000

002cos0

02cos00

000

21

3

3

21

10

θθ
θϑ

θϑ
θθ

µν

rrB

rrB

F , 

(5.26) 
where 

   ( ) 






 +=
r

Q
u

r

Q
rB 32 03

,   (5.27) 

and other components of ( )1aFµν  are equal to zero. In the case when ( ) 0≠rv , 

i.e. the ( )1U - sector is not empty, we obtain that the  first order deformation 
( ) 01 ≠µνG , but for simplicity we prefer here to consider only the case of 

colored black hole solution. 
 All these first order deformations vanish if the noncommutativity 
parameters 0,, 321 →θθθ . However, this limit cannot achieved because the 

symplectic structure of the space-time M imposes the condition ( ) 0det ≠µνθ . 

But we can discover the commutative limit considering .0→h  
 Finally, we mention that colored black holes and their generalizations 
with rotation and cosmological term, as well as solutions with cylindrical and 
plane symmetries have been also obtained [40]. It would be of interest to extend 
these results to the noncommutative theory case.  

6. Conclusions and discussions 

We constructed a model of  noncommutative gauge theory by using a 
star product between Lie algebra valued differential forms defined on a Poisson 
manifold. We followed the same way as in our recent paper [24]. To simplify 
the calculations, we considered a space-time endowed only with torsion. It has 
been showed that, in order to satisfy the restrictions imposed by the 
associativity property of the covariant star product, the torsion of the space-time 

has to be covariant constant, 0=∇ σ
νρµT . On the other hand, it has been argued 

that a covariant star product defined in the case when the space-time is a 
symplectic manifold endowed only with curvature is not possible. This is due to 
the restrictions imposed by the associativity property of the covariant star 
product which requires also the vanishing curvature. The corresponding 
connection is therefore flat symplectic and this reduces the applicability area of 
the covariant star product. 
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An illustrative example has been presented starting from the 

commutative Poincaré gauge theory. Using the gauge fields aeµ  and fixing the 

gauge 0=ab

µω  [38] we defined the non-symmetric connection a

a ee µν
ρρ

µν ∂=Γ . 

We deduced that, in this case, the conditions necessary to define a covariant star 
product on a symplectic manifold M completely determine its connection. 

Some other possibilities of applying this covariant star product have 
been also analysed. First, it will be very important to generalize the Seiberg-
Witten map to the case when the ordinary derivatives are replaced with 
covariant derivatives and the Moyal star product is the covariant one. Second, 
we can try to develop a noncommutative gauge theory of gravity considering 
the symplectic manifold M as the background space-time. For such a purpose, 
we have to verify if the non-commutative field equations do not impose too 

many restrictive conditions on the connection ρ
µνΓ , in addition to those required 

by the existence of the covariant product. However, it remain unsolved the 
problem of the gauge group which we can choose. The Poincaré group can not 
be used because it does not close with respect to star product. A possibility will 
be to choose the group GL(2, C), but in this case we obtain a complex theory  of 
gravitation [41, 42]. Another possibility is to consider the universal enveloping 
of Poincaré group, but this is infinite dimensional and we must find criteria to 
reduce the number of the freedom degrees to a finite one. Some possible ideas 
are given for the case of SU(N) or GUT theories in Ref. [43], where it is argued 
that the infinite number of parameters can in fact all expressed in terms of right 
number of classical parameters and fields via the Seiberg-Witten maps. 

In a recent paper [44] a similar aim of applying covariant ∗ -products 
has been pursued though with a different approach. Specifically, there are 
studied covariant ∗ - products on spaces of tensor fields defined over a Fedosov 
manifold with a given symplectic structure and a given flat torsionless 
symplectic connection. 

 

A. Appendix 

  Here we present the analytical computing program using the 
GRTensorII algebra package, running on the MapleV platform, which we used 
to perform all the calculations implied in the example given in Section 5. The 
program contains a number of procedures, which allow to calculate: the torsion 

and curvature tensors ρ
µνT , ν

λρσ
ν
λρσ RR

~
, , the covariant derivatives 

ρσ
µνλ

ρσ
µνλ

ρσ
µνλ

ρσ
µνλ

ρ
µνλ RRRRT

~~
,

~
,

~
,, ∇∇∇∇∇  and µν

λ
µν

λ θθ ∇∇
~

,  of the torsion 

ρ
µνT , the curvatures ν

λρσ
ν
λρσ RR

~
,  and the bivector µνθ  respectively, the first 
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order quantum deformations 
( ) ( ) ( )111 ,, µν

µνµ GFA  of the gauge fields, the 

strength tensor field and the metric components respectively.  Also, the program 
integrates the differential equation resulting from the constraints imposed 
symplectic structure and the associativity property of the star product on the 
connection.Below we list only a part of program which allows to define and 
calculate the quantities specified previously.  
 

Noncommutative gauge theory.mws 
 

> introduce the components of tetrad gauge fields µ
ae  and 

µ
ae : 

> grdef(` e {^a miu}`}; 
> grdef(` e {a ^miu}`); 
> define the connection coefficients: 
> grdef(`Γ {^rho miu niu}:= e {a ^rho}∗ e {^a niu, miu}`); 
> define the torsion: 
> grdef(`T {^rho miu niu}:=Γ {^rho miu niu}-Γ {^rho niu miu}`); 
> define the curvatures: 
> grdef(` R {^niu lambda rho sigma}:= Γ {^niu sigma lambda, rho}- Γ {^niu 

rho lambda, sigma}+ Γ {^niu rho tau} ∗ Γ {^tau sigma lambda}- Γ {^niu 
sigma tau}∗ Γ {^tau rho lambda}`); 

> grdef(` R
~

{^niu lambda rho sigma}:= Γ {^niu lambda sigma, rho}- Γ {^niu 
lambda rho, sigma}+Γ {^niu tau rho }∗ Γ {^tau lambda sigma}-Γ {^niu tau 
sigma}∗ Γ {^tau lambda rho}`); 

> introduce the components of the bivector 
µνθ : 

> grdef(`theta{^miu ^niu}`); 

> define the components ν
λρσ

µλµν
ρσ θ RR

~~
= : 

> grdef(` R
~

{^miu ^niu rho sigma}:=theta{^miu ^lambda} ∗ R
~

{^niu lambda 
rho sigma}`); 

> define the covariant derivative 
µν

λ θ∇ : 

> grdef(` θD {lambda ^miu ^niu}:= theta{^miu ^niu, lambda}+Γ {^miu sigma 
lambda} ∗ theta{^sigma ^niu}+ Γ {^niu sigma lambda} ∗ theta{^miu 
^sigma}`); 

> define the covariant derivative ρσ
µνλR

~
∇ : 

> grdef(` RD
~

{^rho ^sigma miu niu lambda}:= R
~

{^rho ^sigma miu niu, 

lambda}+ Γ {^rho tau lambda} ∗ R
~

{^tau ^sigma miu niu}+ Γ {^sigma tau 

lambda}∗ R
~

{^rho ^tau miu niu}-Γ {^tau miu lambda}∗ R
~

{^rho ^sigma tau 

niu}-Γ {^tau niu lambda}∗ R
~

{^rho ^sigma miu tau}`); 
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> define the covariant derivative ρ
µνλT∇ : 

> grdef(` DT {lambda ^rho miu niu}:= T {^rho miu niu, lambda}+ Γ {^rho 
lambda sigma} ∗ T {^sigma miu niu}- Γ {^sigma lambda miu} ∗ T {^rho 
sigma niu}-Γ {^sigma lambda niu}∗ T {^rho miu sigma}`); 

> introduce the components of the gauge fields aAµ : 

> grdef(` A {^a miu}`); 

> define the covariant derivative aAνµ∇ : 

> grdef(` DA {^a niu miu}:= A {^a niu, miu}-Γ {^rho miu niu}∗ A {^a rho}`); 

> introduce the constant of structure
a

bcf : 

> grdef(` f {^a b c}`); 

> define the components
aFµν  of the strength tensor field: 

> grdef(` F {^a miu niu}:= A {^a niu, miu}- A {^a miu, niu}- f {^a b 

c}∗ A {^b miu} A {^c miu}`); 

> define the covariant derivative aFµνσ∇ : 

> grdef(` DF {^a miu niu sigma}:= F {^a miu niu, sigma}- Γ {^rho sigma 
miu}∗ F {^a rho niu}-Γ {^rho sigma niu}∗ F {^a miu rho}`); 

> integrate equation for the function ( )rA : 
> ode:=diff(A(r),r,r) ∗A(r)-2∗ (diff(A(r),r))^2; 
> dsolve(ode, A(r)); 

> introduce the anticommutator constants 
a

bcd : 

> grdef(` d {^a b c}`); 

> define the first order quantum deformation ( )1aAµ  of the gauge field: 

> grdef(` 1A {^a miu}:= - theta{^rho ^sigma}∗ A {^b rho}∗ ( DA {^c sigma 
miu}+ F {^c sigma miu})∗ d {^a b c}/4`); 

> introduce the components of the metric µνG : 
> grdef(`G {^miu ^niu}`); 

> define the components of 0
µA : 

> grdef(` 0A {miu}:=[0,0,0, ( )rv ]`); 

> define the first order quantum deformation ( )1µνG : 
> grdef(` 1G {^miu ^niu}:= - theta{^rho ^sigma} ∗ A {rho} ∗ DG {^miu 

^niu,sigma}`); 
> define the gauge derivative µνσ FD  of the strength tensor field: 

> grdef(` Dg {^a miu niu sigma}:= DF {^a miu niu, sigma}+ f {^a b 

c}∗ A {^b sigma}∗ F {^c miu niu}`); 
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> define the first order quantum deformation ( )1aFµν : 

> grdef(` 1F {^a miu niu}:= -theta{^rho ^sigma}∗ ( A {^b rho}∗ ( DF {^c miu 
niu, sigma}+ Dg {^c miu niu sigma})-2 ∗ F {^b miu rho} ∗ F {^c niu 

sigma})∗ d {^a b c}/4; 
> calculate the results: 

> grcalc( ( )dndnupT ,, , ( )dndndnupR ,,, , ( )dndndnupR ,,,
~

), 

 > grcalc ( ( )dndnupdnDT ,,, , ( )dndndnupupRD ,,,,
~

, ( )upupdnD ,,θ ); 

> grcalc ( ( )dnupA ,1 , ( )upupG ,1 , ( )dndnupF ,,1 ) 
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CÂMPURI GAUGE CU SIMETRIE SFERICĂ PE SPAłIUL-TIMP NECOMUTATIV 
(Rezumat) 

Se construieşte un model general de teorie gauge definită pe o varietate simplectică 
considerată ca spaŃiu-timp. In acest scop, se foloseşte un produs stea covariant între 
forme diferenŃiale cu valori în algebra Lie. Se stabilesc constrângerile impuse de 
structura simplectică asupra conexiunii spaŃiului-timp şi se verifică proprietatea de 
asociativitate a produsului stea. Ca un exemplu, se consideră teoria gauge necomutativă 
U(2) definită pe o varietate spaŃiu-timp simplectică dotată numai cu torsiune. Se 
conchide că constrângerile impuse de structura simplectică a spaŃiului-timp si 
proprietatea de asociativitate a produsului stea covariant determină complet conexiunea 
spaŃiului-timp. De asemenea, sunt prezentate câteva comentarii asupra unei teorii gauge 
a gravitaŃiei. 


