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Einstein’s theory of general relativity was formulated as a gauge theory of Lorentz symmetry by

Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the

gauge theory of Poincaré transformations. In this framework, we propose a formulation of the gravita-

tional theory on canonical noncommutative space-time by covariantly gauging the twisted Poincaré

symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an

essential ingredient of the theory of general relativity. It appears that the twisted Poincaré symmetry

cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a

more general covariant twist element. The advantages of such a formulation as well as the related

problems are discussed and possible ways out are outlined.
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I. INTRODUCTION

It is generally expected that the smooth manifold struc-
ture of the classical space-time should break down at
distances of the order of the Planck length

lP ¼
ffiffiffiffiffiffiffi
@G

c3

s
� 1:6 � 10�35 m; (1.1)

so that all physical phenomena become essentially non-
local—as opposed to the locality of traditional geometrical
theories of gravitation and quantum and gauge field theo-
ries of particle physics. It is hoped that an appropriate
implementation of the nonlocality will eventually enable
the formulation of a unified theory of the fundamental
interactions of nature, which should be free from singular-
ities, divergences, and any other kind of inconsistencies.
The noncommutativity of space-time coordinates is one
way to implement the nonlocality of Planck scale physics,
which is well motivated.

Formally, the noncommutativity of coordinate operators
x̂�, � ¼ 0, 1, 2, 3 is achieved by imposing the commuta-
tion relations

½x̂�; x̂�� ¼ i���; (1.2)

where in the canonical case ��� is an antisymmetric con-
stant matrix of dimension length squared, and by letting the
fields on noncommutative space-time be functions of the
noncommutative coordinate operators. Through Weyl
quantization the noncommutative algebra of operators gen-
erated by (1.2) can be represented on the algebra of ordi-
nary functions on classical space-time by using the
noncommutative Moyal star product. The more general
case with ��� being an antisymmetric tensor field has
also been considered.

Combining Einstein’s theory of general relativity and
quantum mechanical measurements obeying Heisenberg’s
uncertainty principle leads to operational noncommutativ-

ity of space-time coordinates [1,2]. This has led to the
formulation of quantum field theory on noncommutative
space-time.
String theory is one of the strongest motivations for

considering noncommutative space-time geometries and
noncommutative gravitation. It has been shown that when
the end points of strings in a theory of open strings are
constrained to move on D branes in a constant B-field
background and the theory is taken in a certain low-energy
limit, then the full dynamics of the theory is described by a
gauge theory on a noncommutative space-time [3]. Thus,
noncommutative gauge theory emerges as a low-energy
limit of open string theory with a constant antisymmetric
background field.
The formulation of local (gauge) symmetries on a non-

commutative (nonlocal) space-time is a delicate issue.
Most gauge groups cannot be defined on noncommutative
space-time, because they do not close under the star prod-
uct. The noncommutative unitary group U?ðnÞ can be
defined, but with representations limited by the no-go
theorem [4] (see also [5,6]). A noncommutative standard
model based on the gauge groups U?ðnÞ has been con-
structed [7] (see also, for its extension to noncommutative
minimal supersymetric standard model, [8]).
Another approach to the noncommutative gauge theories

has been through the so-called Seiberg-Witten map [3],
which originally related a noncommutative U?ðnÞ gauge
theory to a commutative one, both obtained as low-energy
effective limits in string theory. The philosophy behind the
Seiberg-Witten map has been subsequently used to formu-
late noncommutative gauge theories with gauge fields
valued in the enveloping algebra of suðnÞ [9,10] and a
corresponding noncommutative version of the standard
model has been built [11].
A new interpretation of the relativistic invariance of the

commutation relations (1.2) was proposed in [12]: by using
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the concept of twisted Poincaré algebra, the relativistic
invariance can be generalized to the framework of Hopf
algebras. If in the usual (commutative) case, relativistic
invariance means invariance under the Poincaré transfor-
mation, then in the noncommutative case relativistic in-
variance means invariance under twisted Poincaré
transformations [13]. The representation content of the
twisted Poincaré algebra is identical with that of the usual
Poincaré algebra and this legitimates the usage of the
familiar representations of the Poincaré symmetry in the
context of noncommutative field theories [12]. The non-
commutative field theories, although they lack the Lorentz
symmetry, are invariant under the twisted Poincaré algebra,
deformed by the Abelian twist element

F ¼ eði=2Þ���P��P� ; (1.3)

where P� ¼ �i@� are the generators of space-time trans-

lations. The twist induces, on the representations of the
Poincaré algebra, the deformed multiplication

�ð� � c Þ ¼ �c ! �?ð� � c Þ ¼ �ðF�1ð� � c ÞÞ
¼ � ? c ; (1.4)

which is precisely the (Moyal) star product. The question
about the action of the twisted Poincaré algebra on fields
and of the actual meaning of the invariance under twisted
Poincaré algebra has been raised in [14,15].

Recently, an attempt was made to twist also the gauge
symmetry, by extending the global Poincaré algebra
through a semidirect product with the gauge algebra, and
by twisting the coproduct of the combined algebra by using
the Abelian twist element (1.3). This approach was shown
[16] to be in conflict with the very idea of gauge symmetry,
since it implicitly assumed that when a field transforms
according to a given representation, then its partial deriva-
tives of any order also transform in the same representation
of the gauge algebra, which is obviously not the case. A
further attempt [17] to twist in a gauge-covariant manner
the internal gauge transformations and at the same time
keep the Moyal space-time structure defined by (1.2)
turned out to be unsuccessful. It is intriguing that the
external Poincaré symmetry and the internal gauge sym-
metry cannot be unified under a common twist. This situ-
ation is reminiscent of the Coleman-Mandula theorem
[18], although not entirely, since this theorem concerns
global symmetry and simple groups. However, one can
envisage that supersymmetry [19], due to its intrinsic
internal symmetry, may reverse the situation, and a non-
commutative gauge theory may be constructed by means of
a twist.

There is a good understanding of the noncommutative
effects on matter and gauge fields defined on the flat non-
commutative space-time. The next step is to incorporate
gravity by considering curved noncommutative space-
times. The main problem is that the noncommutativity

parameter ��� is usually taken to be constant, which breaks
the Lorentz invariance of the commutation relations (1.2),
and implicitly of any noncommutative field theory. This
has motivated a large amount of work to study noncom-
mutative deformations of general relativity (see, e.g., [20–
25] and references therein). Noncommutative gauge theory
defined through matrix models [26,27] contains a specific
version of gravity as an intrinsic part, and provides a
dynamical theory on noncommutative spaces.
Noncommutative deformations of gravity have also led to
a complex metric and gauge groups larger than the Lorentz
group [20,22]. A noncommutative general relativity re-
stricted to the volume-preserving transformations (uni-
modular theory of gravity) has been also constructed
[28]. First steps toward a gauge theory of noncommutative
gravity based on a �-twisted approach have been made in
[29]. Spherically symmetric spaces generated by four non-
commutative coordinates in the frame formalism have also
been investigated [30]. Lately, the version of noncommu-
tative gravity obtained by the deformation of the diffeo-
morphism algebra [23] using the twist introduced in [12]
has been most studied in the literature. However, it turned
out that the dynamics of the noncommutative gravity aris-
ing from string theory [31] is much richer than this version
of noncommutative gravity. The dynamics of closed strings
in the presence of a constant B field induces a gravitational
action in the next-to-leading order in the Seiberg-Witten
limit [3]. Some of the three-graviton vertices have been
derived and they cannot be obtained from an action written
only in terms of the star product. It is suspected that the
reason for this is the noncovariance of the Moyal star
product under space-time diffeomorphisms. A geometrical
approach to noncommutative gravity, leading to a general
theory of noncommutative Riemann surfaces in which the
problem of the frame dependence of the star product is also
recognized, has been proposed in [32] (for further develop-
ments, see [33,34]).
A possibility of obtaining a theory, which is covariantly

deformed under the local Poincaré transformations, is that
of gauging the twisted Poincaré algebra itself. Einstein’s
theory of general relativity was formulated as a gauge
theory of Lorentz symmetry by Utiyama [35] in 1956,
while the Einstein-Cartan gravitational theory was formu-
lated by Kibble [36] in 1961, as the gauge theory of
Poincaré transformations. Instead of the partial derivatives
in the Abelian twist element (1.3) one can use the covariant
derivatives [36] (see also [37]):

r� ¼ @� þ i

2
!�

ab�ab; (1.5)

where the (constant) spin matrices �ab form a representa-
tion of the Lorentz algebra. We can define a covariant non-
Abelian twist element as

T ¼ e�ði=2Þ���r��r�þOð�2Þ; (1.6)
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with possible covariant higher order terms in the noncom-
mutativity parameter ��� in the exponent. In this paper we
study the properties of such a covariant twist.

In Sec. II, we briefly review the commutative gauge
theory of gravitation and in Sec. III, some basic aspects
of twisting Hopf algebras are presented and the twisted
Poincaré algebra is defined.

Section IV is devoted to the possibility of gauging the
twisted Poincaré symmetry itself. A covariant non-Abelian
twist element is defined by using the covariant derivative of
the Poincaré gauge theory. The conditions ensuring that the
Hopf algebra structure is preserved by the twist are veri-
fied. It is shown that the star product induced by the
covariant twist is not associative. Therefore, the twisted
Poincaré symmetry cannot be gauged by generalizing the
Abelian twist (1.3) to a covariant non-Abelian twist (1.6),
nor by introducing a more general covariant twist element.

II. COMMUTATIVE GAUGE THEORY OF
GRAVITATION

General relativity (GR) still lacks the status of funda-
mental microscopic theory, because of the standing prob-
lems of quantization of the gravitational field and the
existence of singular solutions under very general assump-
tions. Since the concept of gauge symmetry has been
highly successful in describing the other three fundamental
interactions, gauge theories of gravitation are very attrac-
tive. The important role of the Poincaré symmetry as the
concept of relativistic invariance in the quantum field
theory, leads one to consider the Poincaré gauge symmetry
as a natural framework for describing the gravitational
interaction.

The Einstein-Cartan theory of gravitation is a modifica-
tion of GR, allowing space-time to have torsion, in addition
to curvature, and relating torsion to the density of intrinsic
angular momentum (the spin). In GR the Lorentz group,
instead of the Poincaré group, is the structure group acting
on the orthonormal Lorentz frames in the tangent spaces of
the space-time manifold. Therefore, there is no room for
translations in GR and thus for the torsion and spin tensors.
In the Poincaré gauge theory, the torsion and its relation to
the spin are naturally introduced, restoring the role of the
Poincaré symmetry in relativistic gravity. Its geometric
interpretation shows that the space-time has the structure
of Riemann-Cartan geometry, possessing both curvature
and torsion [36–40]. The curvature and torsion are surface
densities of Lorentz transformations and translations,
respectively.

The global Poincaré group is a ten-dimensional non-
compact Lie group, which has the structure of a semidirect
product of the translation group T 4 and of the Lorentz
group SOð1; 3Þ, P ¼ SOð1; 3Þ2T 4. In order to define its
transformations, we consider the Minkowski space-time
M4, endowed with the real coordinates x�, � ¼ 0, 1, 2,
3. The isometry group of M4 is the group of global

Poincaré transformations, written in the infinitesimal
form as

x0� ¼ x� þ!�
�x

� þ ��; (2.1)

where !�� ¼ �!�� and �� are the ten infinitesimal pa-
rameters associated to the Lorentz rotations and space-time
translations, respectively.
In order to define matter fields on space-time (scalars,

vectors, spinors, etc.), we consider the tangent space Tp at

each point p 2 M4. On each tangent space Tp we can use

a coordinate frame (C), consisting of four vectors e�
tangent to the coordinate lines, or a local Lorentz frame
(L) of four orthonormal vectors eaðxÞ,

eaðxÞ � ebðxÞ ¼ �ab ¼ diagð�1; 1; 1; 1Þ;
which are named the tetrad. The Latin indices (a; b; . . . )
refer to the L frames and the Greek indices refer to the C
frames. To each L frame feagwe can associate local inertial
coordinates xa, a ¼ 0, 1, 2, 3.
Now we consider the local Poincaré (gauge) group. In

order to make the Lagrangian Lð�; @a�Þ invariant under
the local Poincaré transformations,

x0a ¼ xa þ!a
bðxÞxb þ �aðxÞ; (2.2a)

�0ðx0Þ ¼
�
1� i

2
!abðxÞ�ab

�
�ðxÞ; (2.2b)

with the parameters !abðxÞ and �aðxÞ depending on space-
time coordinates, we have to introduce new compensating
fields ea�ðxÞ and!�

abðxÞ ¼ �!�
baðxÞ, named tetrads and

spin connections, respectively [41]. They enable us to
define the gauge-covariant derivative [35,36] (see also
[37]), which in the C frame is written as

r�� ¼
�
@� þ i

2
!�

ab�ab

�
�: (2.3)

The gauge fields ea�ðxÞ have inverses ea�ðxÞ, which satisfy
ea�ðxÞeb�ðxÞ ¼ �a

b, e
a
�ðxÞea�ðxÞ ¼ ��

�. They can be used

to transform C-frame indices �; �; . . . into the L-frame
indices a; b; . . . , and vice versa. Thus, we can define the
covariant derivative with respect to the L frame by

ra� ¼ ea
�r��: (2.4)

The quantities Rab
�� and Ta

��,

Rab
�� � Fab

��

¼ @�!�
ab � @�!�

ab þ ð!�
ac!�

db

�!�
ac!�

dbÞ�cd; (2.5)

Ta
�� � Fa

��

¼ @�e
a
� � @�e

a
� þ ð!�

abec� �!�
abec�Þ�bc;

(2.6)

obtained from the commutator of two covariant deriva-
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tives, ½ra;rb�� ¼ ð12Fcd
ab�cd � Fc

abrcÞ�, are identi-

fied with the components of the curvature and torsion
tensors of the space-time, respectively. Therefore, the
Poincaré gauge theory of gravitation has the geometric
structure of the Riemann-Cartan space U4 with curvature
and torsion.

The metric tensor can be defined by using the tetrad
gauge fields. In a C frame it has the components

g��ðxÞ ¼ �abe
a
�ðxÞeb�ðxÞ: (2.7)

According to (2.7) the metric itself can be seen as an
effective gauge field, i.e., a dynamical variable.

By imposing the condition of null torsion, Ta
�� ¼ 0,

one can solve for the spin connection !�
ab in terms of the

tetrads ea�, thus reducing the Einstein-Cartan theory to

GR.

III. TWISTING THE POINCARÉ ALGEBRA

To describe physics on the noncommutative space-time
generated by (1.2), one replaces the usual pointwise prod-
uct of functions, fðxÞ and gðxÞ, by the noncommutative
Moyal star product:

ðf ? gÞðxÞ ¼ fðxÞ exp
�
i

2
@Q��

�� ~@�

�
gðxÞ

¼ fðxÞgðxÞ þ X1
n¼1

1

n!

�
i

2

�
n
��1�1 � � ���n�n

� ð@�1
� � � @�n

fðxÞÞð@�1
� � � @�n

gðxÞÞ: (3.1)

The noncommutative space-time does not possess
Lorentz symmetry when ��� in (1.2) is a constant anti-

symmetric matrix. This could be a serious problem, be-
cause the quantum and gauge field theories of high energy
physics are vitally dependent on the representation content
of the Poincaré algebra. The solution to the problems
arising from the breaking of the Lorentz symmetry is the
twisted Poincaré symmetry [12,13].

In the language of quantum groups, one can deform a
cocommutative Hopf algebra like the universal enveloping
algebra of a Lie algebra G, denoted below by UðGÞ, to a
non-cocommutative one by introducing a twist element,
F 2 UðGÞ �UðGÞ, which modifies the coproduct of the
Hopf algebra by a similarity transformation

�0ðXÞ ! �tðXÞ ¼ F�0ðXÞF�1; X 2 G; (3.2)

in other words, by twisting the coproduct of UðGÞ [42]
(see also the monographs [43]). In order to preserve the
Hopf algebra structure, the twist element has to satisfy the
twist condition

F 12ð�0 � idÞF ¼ F 23ðid � �0ÞF ; (3.3)

where F 12¼F �1 and F 23¼1�F . The twisting of the
coproduct (3.2) is accompanied by a modification of the
product in the algebra of representation of UðGÞ as in

(1.4). The twist element does not affect the multiplication
of the generators of the Lie algebra and therefore the
commutation relations among the generators of UðGÞ are
preserved. This means that the representation content of
the twisted Hopf algebra UtðGÞ is identical with that of
UðGÞ.
In the framework sketched above, the Poincaré algebra

P has a commutative subalgebra of translation generators
P� ¼ �i@� that can be used to construct the Abelian twist

element

F ¼ eði=2Þ���P��P�; (3.4)

where ��� is a real constant antisymmetric matrix. This
element satisfies the twist condition (3.3) and thus it can be
used to consistently twist the coproduct of the Hopf algebra
UðP Þ.
Since the Abelian twist element (3.4) only involves the

generators P�, only the coordinate dependency of the

fields �ðxÞ is involved in the deformed multiplication of
the fields. Therefore, the matrix-valued generators ��� act

on the component degrees of freedom of the fields �ðxÞ in
the same way, in the deformed and nondeformed algebra
cases, i.e., through the matrix multiplication and the sym-
metric coproduct

�tð���Þ ¼ �0ð���Þ ¼ 1 ���� þ��� � 1: (3.5)

It should, however, be mentioned that the definition of
fields on noncommutative space-time is more involved
than in the commutative theory [14,15].
The noncommutative quantum field theories built

through Weyl quantization and the canonical star product
(3.1) possess the twisted Poincaré symmetry, which repre-
sents the concept of relativistic invariance in noncommu-
tative field theories. This also enables us to adopt the point
of view according to which the noncommutativity of co-
ordinates (1.2) is required by the twisted Poincaré symme-
try of space-time.

IV. GAUGING THE TWISTED POINCARÉ
SYMMETRY

The local Poincaré symmetry is an external gauge sym-
metry. Through geometrical interpretation the Poincaré
gauge symmetry translates to the covariance under general
coordinate transformations and to the local Lorentz sym-
metry. This ‘‘duality’’ of the Poincaré gauge symmetry is
both a problem and a possibility, since it has been shown
that an internal gauge symmetry cannot be twisted together
with the Poincaré symmetry [16,17]. We can attempt to
gauge the twisted Poincaré algebra itself and find out
whether the gauge theory of the Poincaré symmetry on
noncommutative space-time can be formulated by means
of a gauge-covariant twist.
We could take the direct naive approach and try to

construct a noncommutative gauge theory of the twisted
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Poincaré symmetry by using the Abelian twist (3.4) and by
replacing the pointwise product of functions with the
Moyal star product in the classical theory constructed in
Sec. II. The result would, however, be an inconsistent
frame-dependent theory (due to the frame dependence of
the star product)—in many ways similar to those already
developed—which cannot be a plausible theory of gravi-
tation. We would not be able to give any meaningful
geometrical interpretation to a theory of this type.

Since the global Poincaré symmetry is twisted with the
Abelian twist (3.4) in the case of the flat noncommutative
space-time, also the generalized Poincaré gauge symmetry
on noncommutative space-time should be a quantum sym-
metry. A natural way to generalize the Poincaré gauge
symmetry to the noncommutative setting is to consider it
as a twisted gauge symmetry, so that the global twisted
Poincaré symmetry is obtained in the limit of vanishing
gauge fields. When the global twisted Poincaré symmetry
is generalized to a gauge symmetry, we have to introduce
the gauge fields in order to compensate the noncovariance
of the partial derivatives, similarly as in the commutative
case. Partial derivatives @� will be replaced by covariant

derivatives, which in the coordinate frame read

r� ¼ d� þA�ðxÞ ¼ i

�
ea�ðxÞPa þ 1

2!�
abðxÞ�ab

�
;

(4.1)

where the �ab generate a finite-dimensional representation
of the Lorentz algebra. The difference compared to the
covariant derivative of an internal gauge symmetry [17]

D� ¼ @� þ iA�ðxÞ ¼ iðP� þ Aa
�ðxÞTaÞ (4.2)

are the tetrad gauge fields ea� multiplying Pa in (4.1).A�

are the gauge fields associated to the local Lorentz trans-
formations. In order to obtain a theory that is covariantly
deformed under the Poincaré gauge transformations, the
frame-dependent translation generators Pa have to be re-
placed by the covariant derivatives �ir� in the Abelian

twist element (3.4). The covariant non-Abelian twist ele-
ment is of the form

T ¼ e�ði=2Þ���r��r�þOð�2Þ; (4.3)

where Oð�2Þ stands for the possible additional covariant
terms in higher orders of the noncommutativity parameter
���.1 Because of the similar forms of the covariant deriva-
tives (4.1) and (4.2) and of their twist elements, the basic
algebraic reasoning presented in [17] holds also for the
twist element (4.3) proposed here. The gauge fields A�

alone in r� will violate the twist condition (3.3) and the

rest of gauge fields ea�are not able to rescue the twist

condition. The fact that there are now two second rank
(field strength) tensors (2.5) and (2.6) does not help to
satisfy the twist condition.
Following the arguments of [17], we can attempt to

impose the twist condition (3.3). First we consider the twist
element (4.3) with only the first order term in � in the
exponent. The second order terms in � that do not cancel in
the twist condition (3.3) are, in the left-hand side

1

2

�
� i

2

�
2
�����	ð2r�r� � r� � r	 þ 2r� � r�r�

� r	 þr� � r� � r�r	 þr� � r� � r�r	Þ
(4.4)

and in the right-hand side

1

2

�
� i

2

�
2
�����	ð2r� � r�r	 � r� þ 2r� � r�

� r�r	 þr�r� � r� � r	 þr�r� � r	 � r�Þ:
(4.5)

These terms cannot be canceled by terms that contain
second rank tensors

Rab
���ab; Ta

��ra; (4.6)

because the two indices for such tensors come from the
same ���, unlike for the rr factors in (4.4) and (4.5). This
is why such terms are not included in twist element (4.3) in
the first place. The other possible second order terms in
(4.3) have the forms

�����	1 � r�r�r�r	; �����	r�r�r�r	 � 1;

(4.7)

�����	r� � r�r�r	; �����	r�r�r� � r	;

(4.8)

�����	r�r� � r�r	; (4.9)

with all the permutations of indices of the covariant de-
rivatives—although the antisymmetry of � greatly reduces
the number of independent permutations. We have verified
that when introduced into the twist element (4.3) and
consequently into the twist condition (3.3), these second
orders terms can never cancel all the terms in (4.4) and
(4.5). Therefore, the twist condition (3.3) cannot be ful-
filled in the second order in �.
It is well known that the gauging of the translation

symmetry leads to the Einstein-Hilbert Lagrangian and to
the covariance under general coordinate transformations
[37]. Hence, it is interesting to see whether the gauge
theory of the external translation symmetry group T 4

can be consistently defined together with the twisted
Poincaré symmetry. The covariant derivative for the local
translations is

1The following discussion is presented for the exponential
form (4.3), but the results are valid for any invertible functional
form.
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d� ¼ iea�Pa: (4.10)

In fact, this is also the covariant derivative of the Poincaré
gauge symmetry for one-dimensional representations, for
which the covariant derivative (4.1) should reduce to
(4.10). Clearly the gauge fields ea� now contain contribu-

tions also from the local Lorentz transformations. Since the
covariant derivatives of the translation group do not com-
mute,

½d�; d�� ¼ C�
��d�;

C�
�� ¼ ðea�@aeb� � ea�@ae

b
�Þeb�;

(4.11)

the covariant element

T ¼ e�ði=2Þ���d��d�þOð�2Þ ¼ ei=2�
��ea�Pa�eb�PbþOð�2Þ

(4.12)

cannot be of the Abelian type (3.4), which is known to be a
twist. Because of this and the high level of arbitrariness in
choosing the gauge fields ea� in the translationally cova-

riant twist (4.12), we face similar algebraic problems as
with the covariant twist element (4.3) of the full Poincaré
gauge symmetry. The twist element (4.12) does not satisfy
the twist condition (3.3), even though its form is much
simpler now. Thus, it is not only the local Lorentz symme-
try that breaks the validity of the non-Abelian Poincaré
gauge-covariant twist element (4.3); the external gauge
symmetry associated with the general coordinate trans-
formations is just as problematic.

Thus, we have obtained the result that the Poincaré
gauge-covariant non-Abelian element (4.3) is not a twist
and the star product defined by it is not associative. We can
conclude that the twisted Poincaré symmetry cannot be
gauged by generalizing the Abelian twist (3.4) to a cova-
riant non-Abelian twist (4.3), nor by introducing a more
general covariant twist element.

It should be mentioned that from the mathematical point
of view, we could try to deform the action of the twisted
Poincaré algebra on its representations, instead of general-
izing the twist element, but it seems unlikely that such an
approach could solve the problems related to the frame-
dependent twist element (3.4).

V. CONCLUDING REMARKS AND PERSPECTIVES

In this paper we have investigated the possibility of
gauging the twisted Poincaré symmetry in order to obtain
a noncommutative gauge theory of gravitation. A covariant
non-Abelian twist element T has been defined by using
the covariant derivative of the commutative Poincaré gauge
theory. The twist condition that assures the associativity of
the multiplication of the representations of the twisted
Poincaré algebra is violated already in the second order
in the noncommutativity parameter ���. Adding gauge-
covariant terms of higher orders in ��� into the definition

of the twist T does not improve the result. When we
restrict the gauge symmetry to the translation group T 4,
we are faced with similar algebraic problems as in the case
of the full Poincaré symmetry. Thus, both the local Lorentz
symmetry and the local translational symmetry, associated
with the covariance under general coordinate transforma-
tions, violate the twist condition already in the second
order in the parameter ���.
The question of unifying the external (global or local)

Poincaré symmetry and the internal gauge symmetry under
a common twist remains an open fundamental problem of
noncommutative gauge theories.
Since the introduction of a gauge-covariant twist breaks

the associativity of the algebra of functions on noncommu-
tative space-time, both in the internal and external gauge
symmetry cases, we may have to consider space-time
geometries that are also nonassociative, not only noncom-
mutative. Indeed, there exist in the literature works on
constructing nonassociative theories with some desired
properties (see, e.g., [44–46] and references therein).
There are, as well, attempts to retain the associativity of
the star products defined with covariant derivatives, by
imposing appropriate constraints on Poisson manifolds
(see [47] and references therein).
The nonassociativity, as well as the noncommutativity,

has its origin in string theory. It is known that in the
presence of a constant background field, ! ¼ Bþ F, the
noncommutative geometry is described by the Moyal prod-
uct, which is associative [3] (see also [48,49]). The physics
of this case, corresponding to a flat brane embedded in a
flat background space, is well understood [50]. When ! is
not constant, but it satisfies d! ¼ 0, the target space
becomes a Poisson manifold and thus the Kontsevich
prescription [51] can be used to define the associative
product. In the most general case, d! � 0, it has been
established that the extension of the Kontsevich as well as
the Moyal products become nonassociative [48].
Defining gauge theory on nonassociative manifolds is

not straightforward. Recently, there have been attempts to
restore the associativity of the star product, when the
ordinary derivative is replaced by the covariant derivative.
In [52] (see also [24] for details and example) it was
considered a curved background and a ���, which is a
covariantly constant antisymmetric tensor, D��

�� ¼ 0.

However, the appearance of the commutators ½D�;D�� in
the star product, which vanish only on scalar functions,
spoils the associativity. By considering a background space
endowed with a Friedmann-Robertson-Walker metric, it
was found [52] that ��� can be chosen such that the non-
associativity appears at the fourth order in �, while the
noncommutative effects are already present starting with
�2. No extension to a ‘‘complete’’ associative star product
has, however, been obtained.
In [49] it was suggested that such a nonassocitivity

‘‘anomaly’’ can be removed by including the Chan-Paton
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factors to define the associative star product, starting from
the axioms of the rational conformal field theory. It is
argued that by using the vacuum string field theory, one
may push most of the D branes in a so-called ‘‘closed string
vacuum.’’ In this case the associativity is restored, i.e., the
Chan-Paton factors modify the originally nonassociative
algebra to an associative one. An infinite number of D
branes are, however, needed for this modification.

In the gauge theory of the twisted Poincaré algebra
proposed in our work, the twist condition (3.3) is not
satisfied. This means that the algebra of the twist symmetry
does not close, a property that also implies the nonasso-
ciativity of the star product.

We believe, however, that in formulating the gauge
theory of noncommutative gravity, the requirement of gen-
eral coordinate transformations with respect to the whole
Lorentz group should be relaxed and replaced by the
requirement of general coordinate transformations only
under the residual symmetry of the noncommutative field
theories as argued in [15]. This approach will be pursued in

a forthcoming communication [53]. In a quite different
context, the description of nature at the Planck scale is
suggested to be given by a nonlocal translationally invari-
ant theory, the so-called ‘‘very special relativity,’’ with a
symmetry under a subgroup of the Lorentz group [54],
while at the low-energy scale the Poincaré invariance
would be operating. A realization of such a symmetry,
for the Planck scale part, has been recently given [55] on
the noncommutative space-time with lightlike noncommu-
tativity. A gauge theory of the latter symmetry can be
performed as mentioned above [53].
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