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1 Introduction

Noncommutative gauge theories have been intensively studied recently (see [1]–[9] for an

incomplete list of references). They are defined on noncommutative space-times whose

coordinates satisfy the property

[xµ, xν ] = iθµν , (1.1)

where in the canonical case θµν is an antisymmetric constant matrix of dimension length

squared. The gauge fields on such a space-time are considered functions of the noncommu-

tative coordinate operators. Through Weyl-Moyal correspondence quantization the non-

commutative algebra of operators generated by (1.1) can be represented on the algebra of

ordinary functions on classical space-time by using the noncommutative Moyal ⋆-product.

The gauge theories defined by the ⋆-action of the gauge algebra generators obey a no-go

theorem, which strongly restricts the model building [10, 11].

As θµν is constant, the Lorentz invariance of (1.1) and, consequently, of the corre-

sponding field theory built on such a space-time, breaks down. Nevertheless, noncommu-

tative field theories in general, and gauge theories in particular formulated with Moyal

⋆-product, are invariant under the twisted Poincaré symmetry [12, 13]. In the case of

twist-deformations, the generators of the twisted Hopf algebra act as usual on individual

fields (see [14, 15] for a detailed account of the action of twisted Poincaré algebra and the

meaning of twisted Poincaré invariance), which leads to the natural assumption that the

no-go theorem for noncommutative gauge theories could be circumvented if the action of

the gauge generators were to be expressed by a twist. However, it was proven [9] that the

concept of twist symmetry, originally obtained for the noncommutative space-time (1.1),

cannot be extended to include internal gauge symmetry. In other words, it is not possible

to obtain a gauge covariant twist if the property (1.1) is adopted with θµν constant.

The same result appears to be valid also in the case of noncommutative gauge theory

of gravitation. In ref. [16] it has been shown that the twisted Poincaré symmetry cannot
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be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by intro-

ducing a more general covariant twist element defined with θµν constant. Other methods

used to formulate a noncommutative theory of gravitation [17–22] suffer from the same

difficulty or from the restrictions of the no-go theorem.

As the introduction of a gauge covariant twist, defined with θµν constant, breaks the

associativity of the algebra of functions on noncommutative space-time, both in the internal

and external gauge symmetry cases, we may have to consider space-time geometries that are

also non-associative, not only noncommutative. Indeed, there exist in the literature works

on constructing non-associative theories with some desired properties (see, e.g., [23–27] and

references therein). However, non-associativity introduces many difficulties in formulating

gauge models and they are practically non-attractive.

One possible way to define a covariant star-product satisfying the associativity property

is to consider models of noncommutativity with θµν depending on coordinates. In ref. [28]

a new covariant star-product between differential forms has been defined. For ordinary

functions, which are differential forms of order zero, this product reduces to that given

by Kontsevich [29] (see also [30] for results up to the fourth order in θ and [31] for a

path integral approach). The property of associativity of the new covariant star-product

has been explicitly verified up to the second order in the noncommutativity parameter in

ref. [28].

In this paper we extend the definition given in ref. [28] to the case of Lie algebra

valued differential forms, with the ultimate aim of constructing noncommutative gauge

field theories. Thus we obtain a graded Lie algebra valued Poisson algebra where the

star-bracket operation can be both commutator and anti-commutator, depending on the

grades of the two forms and the order in θ of the considered term in the star-product. The

space-time is supposed to be a symplectic manifold on which a Poisson bracket is defined.

In section 2 we give the definition of the star-product between two arbitrary Lie algebra

valued differential forms and some of their properties. Then, the star-bracket between such

differential forms is introduced and some examples are given. Section 3 is devoted to the

noncommutative gauge theory formulated with the new gauge covariant star-product. The

noncommutative Lie algebra valued gauge potential and the field strength two-form are

defined and their gauge transformation laws are established. It is shown that the field

strength is gauge covariant and satisfies a deformed Bianchi identity. In section 4 a gauge

covariant noncommutative metric on the space-time manifold is introduced and the action

for the gauge fields is written using the star-product. It is proven that this action is gauge

invariant to the second order in θ. Section 5 is dedicated to the discussion of the results and

to an interpretation of noncommutative gauge theory formulated by using the star-product

between Lie algebra valued differential forms on symplectic manifolds.

2 Definition of star-product

We consider a noncommutative space-time M endowed with the coordinates xµ, µ =

0, 1, 2, 3, satisfying the star-commutation relation

[xµ, xν ]⋆ = iθµν(x), (2.1)
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where θµν(x) = −θνµ(x) is a Poisson bivector [28] satisfying

θµρ∂ρθ
νσ + θνρ∂ρθ

σµ + θσρ∂ρθ
µν = 0 . (2.2)

This Poisson bivector defines a Poisson bracket between two functions f(x) and g(x) by

{f, g} = θµν ∂µf ∂νg . (2.3)

(The condition (2.2) ensures the validity of the Jacobi identity for the defined Pois-

son bracket.)

If a Poisson bracket is defined on M , then M is called a Poisson manifold (see [32] for

mathematical details). Suppose now that the bivector θµν(x) has an inverse ωµν(x), i.e.

θµρωρν = δµ
ν . (2.4)

If ω = 1
2
ωµνdxµ ∧ dxν is nondegenerate (det ωµν 6= 0) and closed (dω = 0), then it is

called a symplectic two-form and M — a symplectic manifold. From now on we denote the

exterior product of two forms α and β simply by αβ and understand that it means α ∧ β.

It can be verified that the condition dω = 0 is equivalent to the equation (2.2) [28, 33]. In

this paper we shall consider only the case when M is symplectic.

Because the gauge theories involve Lie algebra valued differential forms such as A =

Aa
µ Ta dxµ = Aµ dxµ, Aµ = Aa

µ(x)Ta, where Ta are the infinitesimal generators of a symme-

try Lie group G, we need to generalize the definition of the Poisson bracket to differential

forms and define then an associative star-product for such cases. These issues were solved

in ref. [28, 33, 34] and here we just recall the definitions and properties to fix the idea.

However, we generalize these results to the case of Lie algebra valued forms. This means

that the Poisson algebra becomes a graded Lie algebra valued one. Therefore, the com-

mutator of differential forms can be a commutator or an anti-commutator, depending on

their degrees.

Assuming that θµν(x) is invertible, we can always write the Poisson bracket {x, dx} in

the form [28, 33]

{xµ, dxν} = −θµσΓν
σρdxρ , (2.5)

where Γν
σρ are some functions of x transforming like a connection under general coordinate

transformations. As Γν
σρ is generally not symmetric, on can use the one-forms connection

Γ̃µ
ν = Γµ

νρdxρ, Γµ
ν = dxρΓµ

ρν (2.6)

to define two kinds of covariant derivatives, ∇̃ and ∇, respectively. For example, if α =

αν dxν is a one-form, then

∇̃µα = (∂µαν − Γρ
µναρ) dxν (2.7)

and analogously for ∇µα. Given θ and Γ, all Poisson brackets are determined [33]. Now,

if α and β are two arbitrary differential forms, then their Poisson bracket is given by [28]

{α, β} = θµν∇µα∇νβ + (−1)|α|R̃µν(iµα)(iνβ) , (2.8)

– 3 –
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where

R̃µν =
1

2
R̃µν

ρσ dxρdxσ (2.9)

and

R̃ν
λρσ = ∂ρΓ

ν
λσ − ∂σΓν

λρ + Γν
τρΓ

τ
λσ − Γν

τσΓτ
λρ , (2.10)

while iµ denotes the interior product which maps k-forms into (k−1)-forms. More exactly,

if α is the k-form

α =
1

k!
αµ1...µk

dxµ1 . . . dxµk , (2.11)

then

iµα =
1

(k − 1)!
αµµ2...µk

dxµ2 . . . dxµk . (2.12)

In order that (2.8) satisfies the properties of the Poisson bracket, the following condi-

tions must be imposed [28]:

a) θµν satisfies the Jacobi identity (2.2);

b) ∇̃ρ is symplectic, i.e. ∇̃ρθ
µν = 0;

c) the connection ∇ν has vanishing curvature, i.e. [∇µ,∇ν ]α = 0 for any differential

form α;

d) the curvature R̃µν associated to the connection one-form Γ̃ρ
σ is covariantly constant

under ∇ρ, i.e. ∇ρR̃
µν = 0. The curvature R̃µν is defined as in the eqs. (2.9)–(2.10),

but with Γρ
µν changed by Γρ

νµ.

Using the above properties, a star-product between differential forms has been defined

in ref. [28]. Here we extend this definition to the case of Lie algebra valued differential forms.

If α = αa Ta and β = βb Tb are two arbitrary such forms, where αa and βb are ordinary

differential forms of degrees |α| and respectively |β|, and Ta are Lie algebra generators in

the fundamental representation, then their star-product has the expression

α ⋆ β = αβ +

∞∑

n=1

(
i~

2

)n

Cn(α, β) = αaβb TaTb +

∞∑

n=1

(
i~

2

)n

Cn(αa, βb)TaTb , (2.13)

where Cn(αa, βb) are bilinear differential operators. We impose then the condition that the

star-product (2.13) satisfies the property of associativity

(α ⋆ β) ⋆ γ = α ⋆ (β ⋆ γ) . (2.14)

Introducing (2.13) in (2.14), we find the following general condition of associativity for an

arbitrary order n:

Cn(C0(α, β), γ) + Cn−1(C1(α, β), γ) + Cn−2(C2(α, β), γ) . . . + C0(Cn(α, β), γ) (2.15)

= Cn(α,C0(β, γ)) + Cn−1(α,C1(β, γ)) + Cn−2(α,C2(β, γ)) . . . + C0(α,Cn(β, γ)) .
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In ref. [28] the expressions of the operators Cn(αa, βb) were obtained up to the second order

in θ. We admit that these results are also valid in our case of Lie algebra valued differential

forms with adequate definitions. They are

C1(α
a, βb) ≡ {αa, βb} = θµν

[
∇µαa∇νβ

b + (−1)|α|R̃ρσ
µν(iρα

a)(iσβb)
]
, (2.16)

C2(α
a, βb) =

1

2
θµνθρσ∇µ∇ρα

a∇ν∇σβb +
1

3
θµρ∂ρθ

νσ(∇µ∇να
a∇σβb −∇να

a∇µ∇σβb)

−
1

2
R̃µνR̃ρσ(iµiρα

a)(iνiσβb)

−
1

3
R̃µν(iνR̃ρσ)[(−1)|α|(iµiρα

a)(iσβb) + (iρα
a)(iµiσβb)]

+(−1)|α|θµνR̃ρσ(iρ∇µαa)(iσ∇νβ
b) . (2.17)

It is important to observe that the operators Cn(αa, βb) have the generalized Moyal sym-

metry [28],

Cn(αa, βb) = (−1)|α||β|+nCn(βb, αa) . (2.18)

Taking into account the graded structure of our Poisson algebra, we define the star com-

mutator of two Lie algebra valued differential forms α = αa Ta and β = βb Tb by

[α, β]⋆ = α ⋆ β − (−1)|α||β|β ⋆ α . (2.19)

For example, if α and β are Lie algebra valued one-forms, we have

[α, β]⋆ = αaβb[Ta, Tb] +
i~

2
C1(α

a, βb){Ta, Tb} +

(
i~

2

)2

C2(α
a, βb)[Ta, Tb] + . . . (2.20)

This result shows that the star commutator of Lie algebra valued differential forms does not

close in general in the Lie algebra but in its universal enveloping algebra. Only in the case

of the unitary groups U(n) the the universal enveloping algebra U(U(n)) in the fundamental

representation coincides with the Lie algebra u(n) (of n × n antihermitian matrices).

We shall use all these properties in sections 3 and 4 to develop a noncommutative gauge

theory with non-Abelian gauge group, up to the second order in ~ (or equivalently O(θ3)).

3 Noncommutative gauge theory

Consider the gauge group G whose infinitesimal generators satisfy the algebra

[Ta, Tb] = if c
abTc, a, b, c = 1, 2, . . . ,m , (3.1)

with the structure constants fa
bc = −fa

cb and the Lie algebra valued infinitesimal parameter

λ̂ = λ̂aTa. (3.2)

We use the hat symbol to denote the noncommutative quantities of our gauge theory. The

parameter λ̂ is a 0-form, i.e. λ̂a are functions of the coordinates xµ on the symplectic

manifold M .

– 5 –
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Now we define the gauge transformation of the noncommutative Lie algebra valued

gauge potential

Â = Âa
µ(x)Ta dxµ = Âµ dxµ, Âµ = Âa

µ(x)Ta , (3.3)

by

δ̂Â = dλ̂ − i[Â, λ̂]⋆ . (3.4)

Here we consider the formula (2.19) for the commutator [Â, λ̂]⋆. Then, using the defini-

tion (2.13) of the star-product, we can write (3.4) as

δ̂Âa = dλ̂a + fa
bcÂ

bλ̂c +
~

2
da

bcC1(Â
b, λ̂c) −

~
2

4
fa

bcC2(Â
b, λ̂c) + . . . , (3.5)

where we denoted {Ta, Tb} = dc
abTc. Since λ̂a are functions, the operators C1(Â

b, λ̂c) and

C2(Â
b, λ̂c) have the expressions (see eqs. (2.16)-(2.17))

C1(Â
b, λ̂c) ≡ {Âb, λ̂c} = θµν∇µÂb∂ν λ̂c , (3.6)

C2(Â
b, λ̂c) =

1

2
θµνθρσ∇µ∇ρÂ

b∂ν∂σλ̂c +
1

3
θµν∂νθ

ρσ(∇µ∇ρÂ
b∂σλ̂c −∇ρÂ

b∂µ∂σλ̂) .

Here we use the definition of the covariant derivative

∇µÂa = (∂µÂa
ν − Γρ

µνÂa
ρ)dxν ≡ (∇µÂa

ν)dxν . (3.7)

In particular, in the case when the gauge group G is U(1), we have fa
bc = 0, a, b, c = 1,

d1
11 = 2, Â1 ≡ Â, λ̂1 ≡ λ̂, therefore (3.5) becomes

δ̂Â = dλ̂ + ~C1(Â, λ̂) + O(~3) . (3.8)

More explicitly, in terms of components,

δ̂Âµ = ∂µλ̂ + ~θνσ∇νÂµ∂σλ̂ + O(~3) , (3.9)

where Âµ(x) is the U(1) gauge potential and λ̂(x) — the infinitesimal parameter (phase).

In zeroth approximation (3.9) reproduces the usual U(1) gauge potential transformation.

Analogously, in the case of U(2), we consider a = (0, k), k = 1, 2, 3. Then, fk
ij = 2ǫijk,

{Ti, Tj} = 2δijT0, i, j, k = 1, 2, 3 and {T0, Tk} = {Tk, T0} = 2Tk, {T0, T0} = 2T0, where

T0 = I is the unit matrix and Tk = σk — the Pauli matrices as generators of SU(2).

Then, since

Â = Âkσk + Â0I, λ̂ = λ̂kσk + λ̂0I , (3.10)

we obtain from (3.5)

δ̂Â0 = dλ̂0 + ~

[
C1(Â

i, λ̂j)δij + C1(Â
0, λ̂0)

]
+ O(~3) , (3.11)

δ̂Âk = dλ̂k + 2ǫijkÂ
iλ̂j + ~

[
C1(Â

k, λ̂0) + C1(Â
0, λ̂k)

]
−

~
2

2
C2(Â

i, Âj)ǫijk + O(~3). (3.12)

Here, the quantities (Â0, λ̂0) correspond to the noncommutative U(1) sector and (Âk, λ̂k),

k = 1, 2, 3 — to the noncommutative SU(2) sector. Considering, in addition, the restriction

– 6 –
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U(2) → U(1), we must keep only eq. (3.11), but without the term C1(Â
i, λ̂j)δij , i, j = 1, 2, 3.

Thus, we rediscover the previous U(1) result (3.8) with Â0 ≡ Â, λ̂0 ≡ λ̂.

We define the curvature two-form F̂ of the gauge potentials by

F̂ =
1

2
dxµdxνF̂µν = dÂ −

i

2
[Â, Â]⋆ . (3.13)

Then, using the definition (2.13) of the star-product and the property (2.18) of the operators

Cn(αa, βb), we obtain from (3.13)

F̂ a = dÂa +
1

2
fa

bcÂ
bÂc +

1

2

~

2
da

bcC1(Â
b, Âc) −

1

2

~
2

4
fa

bcC2(Â
b, Âc) + O(~3) . (3.14)

More explicitly, in terms of components we have

F̂ a
µν = ∂µÂa

ν − ∂νÂ
a
µ + fa

bcÂ
b
µÂc

ν +
~

2
da

bcC1(Â
b
µ, Âc

ν) −
~

2

4
fa

bcC2(Â
b
µ, Âc

ν) + O(~3) , (3.15)

where we used the definition Cn(Âb, Âc) = Cn(Âb
µ, Âc

ν)dxµdxν , with

C1(Â
b
µ, Âc

ν) = θρσ
[
∇ρÂ

b
µ∇σÂc

ν − R̃α
σµν Âb

ρÂ
c
α

]
, (3.16)

C2(Â
b
µ, Âc

ν) = θρσθλτ

[
1

2
∇ρ∇λÂb

µ∇σ∇τ Â
c
ν +

1

3
(∇ρ∇λÂb

µ∇τ Â
c
ν −∇λÂb

µ∇ρ∇τ Â
c
ν) (3.17)

−R̃α
τµν∇ρÂ

b
λ∇σÂc

α

]
.

In the particular case of the U(1) gauge group we obtain

F̂µν = ∂µÂν − ∂νÂµ + ~θρσ

[
∇ρÂµ∇σÂν −

1

2
R̃α

σµνÂρÂα

]
+ O(~3) . (3.18)

Under the gauge transformation (3.4), the curvature 2-form F̂ transforms as

δ̂F̂ = i[λ̂, F̂ ]⋆ , (3.19)

where we used the Leibniz rule

d(α̂ ⋆ β̂) = dα̂ ⋆ β + (−1)|α|α̂ ⋆ dβ̂, (3.20)

which we admit to be valid to all orders in ~. In terms of components, (3.19) reads

δ̂F̂ a = fa
bcF̂

bλ̂c +
~

2
da

bcC1(F̂
b, λ̂c) −

~
2

4
fa

bcC2(F̂
b, λ̂c) + O(~3) . (3.21)

If the gauge group is U(1), then we obtain

δ̂F̂ = ~C1(F̂ , λ̂) = ~θρσ∇ρF̂ ∂σλ̂ + O(~3) ,

or, in terms of components,

δ̂F̂µν = ~θρσ∇ρF̂µν∂σλ̂ + O(~3) . (3.22)

– 7 –
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Also, in the zeroth order, the formula (3.21) becomes

δF a
µν = fa

bcF
b
µνλc ⇐⇒ δF = i[λ, F ] . (3.23)

This formula reproduces therefore the result of the commutative gauge theory. Using again

the Leibniz rule, we obtain the deformed Bianchi identity

dF̂ − i[Â, F̂ ]⋆ = 0 . (3.24)

If we apply the definition (2.19) of the star commutator, we obtain

dF̂ + i[F̂ , Â] =

[
~

2
da

bcC1(F̂
b, Âc) −

~
2

4
fa

bcC2(F̂
b, Âc)

]
Ta + O(~3) , (3.25)

or, in terms of components,

dF̂ a − fa
bc F̂ bÂc =

~

2
da

bcC1(F̂
b, Âc) −

~
2

4
fa

bcC2(F̂
b, Âc) + O(~3) . (3.26)

We remark that in the zeroth order we obtain from (3.25) the usual Bianchi identity

dF − i[A,F ] = 0 . (3.27)

In addition, if the gauge group is U(1), the Bianchi identity (3.26) becomes

dF̂ = ~ C1(F̂ , Â) + O(~3) . (3.28)

This result is also in accord with that of ref. [33].

4 Noncommutative Yang-Mills action

Having established the previous results, we can construct a noncommutative Yang-Mills

action. Denote the metric in the noncommutative space-time M by Gνρ. Its covariant

derivative is

∇µGνρ = ∂µGνρ + GνσΓρ
µσ + Γν

µσGσρ

. (4.1)

If Gνρ is not constant, we have to modify it to be a gauge covariant metric Ĝνρ for the

noncommutative Yang-Mills action. The metric Ĝνρ is gauge covariant in the sense that it

transforms like F̂ (see (3.19))

δ̂Ĝµν = i[λ̂, Ĝµν ]⋆ . (4.2)

Then, using the definition (2.19) of the star commutator, we obtain from (4.2)

δ̂Ĝµν = ~θρσ∇ρĜ
µν∂σλ̂ + O(~3) . (4.3)

The explicit form of the metric could be obtained using, for example, the Seiberg-Witten [1]

map extended to the new star-product defined in ref. [28] and used by us in developing the

noncommutative gauge theory.
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Define the noncommutative Yang-Mills action by (see ref. [33])

ŜNC = −
1

2g2
〈Tr(Ĝ ⋆ F̂ ⋆ Ĝ ⋆ F̂ )〉 = −

1

4g2
〈Ĝµρ ⋆ F̂ρν ⋆ Ĝνσ ⋆ F̂σµ〉 , (4.4)

where g is the gauge coupling constant, and we have used the normalization property

Tr(TaTb) =
1

2
δabI . (4.5)

Using the properties of gauge covariance (3.19) and (4.3) for F̂ and Ĝ respectively, we obtain

δ̂ŜNC = −
1

4g2
~ 〈C1(Tr(ĜF̂ ĜF̂ ), λ̂)〉 + O(~3) . (4.6)

Now, since the integral is cyclic in the Poisson limit [33], i.e.

〈C1(Tr(ĜF̂ ĜF̂ ), λ̂)〉 = 0 , (4.7)

eq. (4.6) becomes

δ̂ŜNC = 0 . (4.8)

Therefore, the action δ̂ŜNC is invariant up to the second order in θ (or ~). In ref. [33] it

has been proven that the action (4.4) can be further simplified as

ŜNC = −
1

2g2
〈Tr(ĜF̂ ĜF̂ )〉 + O(~3) . (4.9)

Imposing then the variational principle δ̂
Â
ŜNC = 0 with respect to the noncommutative

gauge fields Âa
µ, we can obtain the noncommutative Yang-Mills field equations.

5 Discussion

We have developed a noncommutative gauge theory by using a star-product between dif-

ferential forms on symplectic manifolds defined as in ref. [28], by extending the definition

given in ref. [28] to the case of Lie algebra valued differential forms. In this manner we

have obtained a graded Lie algebra valued Poisson algebra where the star-bracket opera-

tion can be both commutator and anti-commutator, depending on the grades of the two

forms. The graded, but not Lie algebra valued, Poisson algebra on a symplectic mani-

fold was initially introduced in refs. [33] and [34]. In these papers an explicit form of the

bracket for one-forms has been obtained. In ref. [28] the results have been generalized

to the case of graded Poisson bracket for arbitrary degrees of differential forms. In order

to develop a noncommutative gauge theory we have defined the star commutator of two

Lie algebra valued differential forms. Since the star-product does not close in general in

the Lie algebra, but only in its universal enveloping algebra, we can use the unitary Lie

algebras U(n) as gauge symmetry or extend the results to the Hopf algebra for any other

algebras. We have introduced the noncommutative one-form gauge potentials Â and the

field strength two-form F̂ and have obtained their gauge transformation laws. We have

proven that the defined field strength F̂ is gauge covariant and satisfies a deformed Bianchi

– 9 –
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identity. To obtain these results we have used the Leibniz rule which we admit to be valid

to all orders in θ.

Finally, we have defined an action for the gauge fields by introducing a gauge covariant

noncommutative metric Ĝνρ on the space-time manifold. The gauge invariance of this

action has been verified up to the second order in θ using the property that the integral is

cyclic in the Poisson limit [33]. The explicit form of the metric Ĝνρ could be obtained using,

for instance, the Seiberg-Witten map extended to the new star-product. Extending the

gauge theory to higher orders in θ requires to find the explicit expressions for the bilinear

differential operators Cn(αa, βb) which define the star-product.
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as noncommutative theory of gravitation, arXiv:0807.0733 [SPIRES].

[17] P. Aschieri et al., A gravity theory on noncommutative spaces,

Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [SPIRES].
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