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Gauge Model Based on Group G × SU(2) ∗

ZET Gheorghe1∗∗, MANTA Vasile2, POPA Camelia3

1Department of Physics, Gh. Asachi Technical University, Iasi, Romania
2Department of Computers, Gh. Asachi Technical University, Iasi, Romania

3Faculty of Physics, Al. I. Cuza University, Iasi, Romania

(Received 21 May 2007)
We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge
group and SU(2) is the internal group of symmetry. We employ the spacetime of four-dimensional Minkowski,
endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength
field tensors are calculated and the field equations are written. A solution of these equations is obtained for the
case that the gauge potentials have a particular form with spherical symmetry. The solution for the gravitational
potentials induces a metric of Schwarzschild type on the gravitational gauge group space.
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Gauge theories are fundamental in the field
theories and, in particular, in elementary particle
physics.[1,18,19,21] The three non-gravitational inter-
actions (electromagnetic, weak and strong) are com-
pletely described by means of gauge theory in the
framework of the standard model. The gauge group is
chosen as a direct product SU(3)×SU(2)×U(1) and
it is considered as a local group of symmetry. On the
other hand, the gauge group for the gravitational in-
teraction is the Poincaré group,[6,11,13] or the de-Sitter
group if we introduce the cosmological constant into
the model.[22] A more elaborated model of superstring
theory also includes the gauge theory and is considered
as an adequate framework to describe all the four fun-
damental interactions (electromagnetic, weak, strong
and gravitational).

In this Letter, we develop a model of gauge the-
ory which combines the internal and gravitational lo-
cal symmetries. We use the quantum gauge theory of
gravitation developed by Wu.[15,16,17] We present this
gauge theory by choosing G×SU(2) as the local group
of symmetry. It is the direct product of the gravi-
tational gauge group G (Ref. [16]) with the internal
group SU(2). In this theory the gravitational field is
treated as a physical interaction in a Minkowski (flat)
spacetime M ,[20] and all gauge fields are described by
gauge potentials.

We obtain solutions for field equations correspond-
ing to the case when the gauge potentials have spher-
ical symmetry. The spacetime is a four-dimensional
Minkowski one, endowed with spherical coordinates,
and the gauge potentials are chosen in a particular
spherical symmetric form. We give some concluding
remarks and few open questions in the unified gauge
models.

We consider a gauge theory based on the local sym-

metry group G × SU(2), which is the direct product
of the gravitational gauge group G and the internal
group SU(2).[1−9] In this theory the gravitation is
treated as a physical interaction in a Minkowski (flat)
spacetime M , and the gravitational filed is described
by gauge potentials. The generators of the gravita-
tional gauge group G are denoted by Pα, α = 1, 2, 3, 0,
and they have expression Pα = −i∂α as differential
operators. They are commuting operators

[Pα, Pβ ] = 0. (1)

The generators of SU(2) group are denoted by Ta,
a = 1, 2, 3, and their commutation relations are

[Ta, Tb] = fc
abTc, (2)

where fc
ab = −fc

ba are the structure constants of SU(2)
group and they coincide with the total anti-symmetric
Levi-Civita symbol of third rank εabc with ε123 = +1.
Because of the direct-product structure of the gauge
group G × SU(2), we have also [Ta, Pα] = 0.

As usual, we introduce the gauge vector field Cµ(x)
with values in the Lie algebra of the group G,

Cµ(x) = Cα
µ (x)Pα, µ = 1, 2, 3, 0, (3)

where Cα
µ (x) are the gravitational gauge potentials.

The corresponding gauge covariant derivative is de-
fined as

Dµ = ∂µ − igCµ(x), (4)

where g is the gauge coupling constant of the gravita-
tional interactions. The corresponding strength field
tensor Fµν(x) = Fα

µν(x)Pα, with values in the Lie al-
gebra of G, has the components[16,22]

Fα
µν = Gβ

µ∂βCα
ν − Gβ

ν∂βCα
µ , (5)

where
Gα

µ(x) = δα
µ − gCα

µ (x) (6)
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represents the new gravitational gauge potentials. We
suppose that these new potentials admit the inverses
Ḡµ

α(x) with the usual properties

Ḡµ
αGβ

µ = δβ
α, Ḡµ

αGα
ν = δµ

ν . (7)

It is easy to verify that the gauge derivatives (4) can
be written in the form

Dµ = Gβ
µ∂β . (8)

Following Refs. [16,22], we define a metric tensor
on the gravitational gauge group manifold by

gαβ = ηµνḠµ
αḠν

β , gαβ = ηµνGα
µGβ

ν , (9)

where ηµν = diag(1, 1, 1,−1) is the metric tensor of
the Minkowski spacetime M and ηµν denotes its in-
verse.

Analogously, the SU(2) internal gauge potentials
Aa

µ(x) are defined by the formula

Aµ(x) = Aa
µ(x)Ta. (10)

The strength tensor field Aµν(x) = Aa
µνTa of the gauge

potentials Aa
µ(x) has the components

Aa
µν(x) = DµAa

ν − DνAa
µ + g1f

a
bcA

b
µAc

ν , (11)

where g1 is the SU(2) gauge coupling constant. Using
Eq. (8), we can write the components (11) as

Aa
µν(x) = Gα

µ∂αAa
ν − Gα

ν ∂αAa
µ + g1f

a
bcA

b
µAc

ν . (12)

The tensor Aa
µν(x) is not a gauge covariant one, and

therefore we have to introduce its covariant version
with the components[16]

Aa
µν(x) = Aa

µν(x) + gḠλ
αAa

λFα
µν . (13)

The field equations for the gravitational gauge field
Cα

µ (x) are[16,22]

∂µ

(1
4
ηµρηνσgαβF β

ρσ − 1
4
ηνρFµ

ρα +
1
4
ηµρF ν

ρα

− 1
2
ηµρδν

αF β
ρβ +

1
2
ηνρδµ

αF β
ρβ

)
= −gT ν

α , (14)

where T ν
α is the gravitational energy-momentum ten-

sor. [16] On the other hand, the field equations of the
SU(2) internal gauge field Aa

µν(x) are

∂µAa
µν = −g1ηνσJσ

a , (15)

where Jσ
a (a = 1, 2, 3) are the corresponding conserved

currents[12,14]

∂µJµ
a = 0. (16)

We will obtain a solution of the field equations (14)
and (15) for the case of the spherical symmetry.

As an application, we will consider a G × SU(2)
gauge theory with spherical symmetry. The spacetime
is a four-dimensional Minkowski endowed with spher-
ical coordinates:

ds2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 − dt2. (17)

For the gravitational gauge potentials we choose a par-
ticular form with the following non-null components

Cr
r = U(r), Cθ

θ =
r − 1
rg

,

Cφ
φ =

r sin θ − 1
rg sin θ

, Ct
t = − U(r)

1 − gU(r)
,

(18)

where U is a function depending only of the 3D radius
r. For the SU(2) internal gauge potentials Aa

µ(x) we
consider only one non-null component

A3
t = V (r), (19)

with V a function only of the variable r. Then the
field equations (14) and (15) become

(1 − gU)(rV ′′ + 2V ′) − grV U ′′ − 2gV U ′

− 2grU ′V ′ = 0, (20)

for SU(2) gauge fields, and respectively

2grU ′(1 − gU) + 2U − gU2 = 0, (21)

for the gravitational gauge field. In fact, for the gauge
gravitational field one obtains four field equations, but
they are equivalent and this is a correct result because
we have only an unknown function U(r).

The general solution of Eq. (21) is

U(r) =
1 ±

√
1 +

a

r

g
, (22)

where a is an arbitrary constant of integration. If we
choose a = −2Gm, where m is supposed to be the
mass of the point-like source of our gravitational field,
then the result (22) corresponds to a Schwarzschild
type solution having the square of the line element
[see the definition (9) of the metric coefficients] equal
to

ds2 =
dr2

1 − 2Gm

r

+ r2(dθ2 + sin2 θdϕ2)

−
(
1 − 2Gm

r

)
dt2. (23)

We remember that this line element is defined on the
gravitational group manifold and that the spacetime
remains a Minkowski (flat) one. As it is shown in
Ref. [15], the quantum gauge theory of gravity im-
poses the relationship g2 = 4πG between the gauge
coupling constant g of the gravitational interactions
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and the Newton’s gravitational constant G. There-
fore, the Schwarzschild solution (23) has a dependence
of the gauge coupling constant g, a result that is in ac-
cord with both quantum gauge theory of gravity and
general relativity.

Now, if we introduce the solution (22) in Eq. (20),
then we obtain the following two possible solutions for
the SU(2) gauge potential V (r)

V1(r) =
√

1 +
a

r
, V2(r) =

√
r

r + a
, (24)

corresponding to the sign “+” and respectively “−”
from the solution (22). The solution V1(r) has a sin-
gularity in the origin r = 0, while the second one V2(r)
is finite in the origin r = 0, but it has a singularity for
r = −a. When r → ∞, both solutions are finite and
we have V1,2(r) → 1.

We also observe that for the spherical model con-
sidered here, there are only gravitational couplings be-
tween fields, but not internal SU(2) gauge couplings,
because the corresponding solutions do not include the
coupling constant g1.

In summary, we have constructed a model of gauge
theory using the quantum gauge theory of gravity de-
veloped by Wu.[15,16,17] In this theory, the gravita-
tional interaction is considered as a fundamental in-
teraction in a flat Minkowski spacetime, and all the
fields (both internal and gravitational) are represented
by gauge potentials.

The strength field tensors of the gravitational and
internal gauge potentials have been calculated, and
the corresponding field equations have been written.
For the case of internal strength field tensor, associ-
ated to the SU(2) group, we obtain a covariant expres-
sion by using a gauge covariant derivative which in-
cludes not only the internal but also the gravitational
gauge potentials. The field equations have on their
right-hand sides the gravitational energy-momentum
tensor [see Eq. (14)] and the internal SU(2) currents
[see Eq. (16)] which are conserved quantities.

As an example of application of the developed G×
SU(2) model, we considered the case when the gauge
fields have spherical symmetry. The corresponding
field equations have been written and their solutions
obtained. The solution for the gravitational gauge po-
tentials induces a metric of Schwarzschild type [see
Eq. (23)] on the gauge gravitational group manifold.
However, the spacetime remains a Minkowski (flat)
one, endowed with spherical coordinates.

We have obtained two solutions for the internal
SU(2) gauge potentials: V1(r) and V2(r) [see Eq. (24)].
The solution V1(r) has a singularity in the origin
r = 0, while the second one V2(r) is finite in the

origin r = 0, but it has a singularity for r = −a.
When r → ∞, both solutions are finite and we have
V1,2(r) → 1.

Our results show that for the particular spherical
model considered, there are only gravitational cou-
plings between fields, but not internal SU(2) gauge
couplings, because the corresponding solutions do not
include the SU(2) coupling constant g1.

Because the spacetime used in our model of gauge
theory remains Minkowski (flat), i.e., it is not affected
by gravitation, the quantization of the gravitational
field can be obtained by the path integral method on
a similar way with that from internal gauge models. In
addition, the Poincaré group is considered as a purely
inner symmetry and this assures the renormalizability
property of our unified gauge model.[13,16]

The gauge model developed can be generalized to
an arbitrary gauge group. All fields have to be repre-
sented by gauge potentials and the spacetime remains
a Minkowski (flat) one, even if we introduce the grav-
itation into the model. Such a formulation could lead
to a consistent quantum theory of gravity.[15] These
aspects remain as open questions for the future re-
search.
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[11] Blagojević M 2002 Gravitation and Gauge Symmetries

(London: Institute of Physics Publishing) p 42
[12] Landau L and Lifschitz F 1966 Théorie du champ (Moscou:
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