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Abstract

A deformed Schwarzschild solution in noncommutative gauge theory of gravitation is obtained. The gauge potentials (tetrad fields) are de-
termined up to the second order in the noncommutativity parameters Θμν . A deformed real metric is defined and its components are obtained.
The noncommutativity correction to the red shift test of general relativity is calculated and it is concluded that the correction is too small to have
observable effects. Implications of such a deformed Schwarzschild metric are also mentioned.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The noncommutativity of space–time is a compelling option for the description of quantized space–time and its study is signif-
icant for answering the ultimate question about the quantum nature of space–time at very high energy scales. If nature has chosen
such a course, it is most sensible to search for manifestations of the noncommutativity of space–time at the “natural laboratories”
of the highest energy, i.e., the gravitational singularities.

The noncommutativity of space–time is intrinsically connected with gravity [1,2]. Gauge theories of gravitation have been
intensively studied up to now, both on commutative [3,4] (see also the reviews [5,6]) [7] and noncommutative [8,9] space–times.
Many recent investigations are oriented towards a formulation of general relativity on noncommutative space–times. In Ref. [8]
for example, a deformation of Einstein’s gravity was studied by gauging the noncommutative SO(4,1) de Sitter group and using
the Seiberg–Witten map [2,10,11] with subsequent contraction to the Poincaré (inhomogeneous Lorentz) group ISO(3,1). Another
construction of noncommutative gravitational theory, based on the twisted Poincaré algebra [12] was proposed in Ref. [13]. The
twisting procedure insures the invariance of the algebra [xμ, xν] = iΘμν (canonical structure) defining the noncommutativity
of the space–time; however, it turned out that the dynamics of the noncommutative gravity coming from string theory [14] is
much richer than the one in this version of deformed gravity [13]. In Ref. [15] a noncommutative version of general relativity
was proposed for a restrictive class of coordinate transformations which preserve the canonical structure. By gauging the Lorentz
algebra so(3,1) within the enveloping algebra approach one obtains a theory of noncommutative general relativity restricted to the
volume-preserving transformations (unimodular theory of gravity). Another attempted approach was to twist the gauge Poincaré
algebra [16]. It is worthwhile to emphasize that there remains one more important unsolved problem in all these theories: to
establish a Leibniz rule for gauge transformations of fields [17,18], since the star product is not invariant under the diffeomorphism
transformations. Steps towards this goal have been taken in a geometrical approach to noncommutative gravity [19].
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In this Letter, proceeding along the approach in Ref. [8], we present a deformed Schwarzschild solution in noncommutative gauge
theory of gravitation. Although this version of noncommutative gravity is certainly not a final one, we believe that the complete
theory will retain the main features of this approach. First, we recall the results of a previous study, in which a de Sitter gauge
theory of gravitation over a spherically symmetric commutative Minkowski space–time was developed [7]. Then, a deformation of
the gravitational field is constructed by gauging the noncommutative de Sitter SO(4,1) group [8] and using Seiberg–Witten map [2].
The space–time of noncommutative theory will be also of Minkowski type but it will be endowed with spherical noncommutative
coordinates. The deformed gauge fields are determined up to the second order in the noncommutativity parameters Θμν .

Finally, the deformed gravitational gauge potentials (tetrad fields) êa
μ(x,Θ) are obtained by contraction of the noncommutative

gauge group SO(4,1) to the Poincaré (inhomogeneous Lorentz) group ISO(3,1). As an application, we calculate these potentials
for the case of a Schwarzschild solution and define the corresponding deformed metric ĝμν(x,Θ). It is for the first time when such
a deformed metric is given for a 4-dimensional noncommutative space–time. The corrections appear only in the second order of the
expansion in Θ , i.e., there are no terms of the first order in Θ . We will give also an evaluation of the noncommutativity corrections
to the red shift test of general relativity, which turns out to be extremely small for the case of the Sun.

The calculations are very tedious, so that we have used an analytical program conceived for the GRTensor II package of the
Maple platform. Specific routines have been written and adapted for Maple.

Section 2 is devoted to the commutative gauge theory of the de Sitter group SO(4,1) formulated on a 4-dimensional Minkowski
space–time endowed with a spherical metric. Section 3 contains the results regarding the noncommutative theory. The deformed
gauge potentials (tetrad fields) are obtained up to the second order of the expansion in Θ . Based on these results, we define
a deformed real metric and calculate its components in the case of a Schwarzschild solution. Using the results we determine
in Section 4 the deformed Schwarzschild metric. The corrections are obtained up to the second order of the noncommutativity
parameters Θμν . An evaluation of the value for the correction to the red shift test of general relativity is also given. Some concluding
remarks and further directions of investigation are given in Section 5.

2. Commutative gauge theory

We review first the gauge theory of the de Sitter group SO(4,1) on a commutative 4-dimensional Minkowski space–time en-
dowed with the spherically symmetric metric [7]:

(2.1)ds2 = dr2 + r2(dθ2 + sin2 θ dϕ2) − c2 dt2.

This means that the coordinates on this space–time are chosen as (xμ) = (r, θ,ϕ, c t),μ = 1,2,3,0. The SO(4,1) group is 10-
dimensional and its infinitesimal generators are denoted by MAB = −MBA, A,B = 1,2,3,0,5. If we introduce the indices
a, b, . . . = 1,2,3,0, i.e., we put A = a,5, B = b,5, etc., then the generators MAB can be identified with translations Pa = Ma5
and Lorentz rotations Mab = −Mba . The corresponding non-deformed gauge potentials will be denoted by ωAB

μ (x) = −ωBA
μ (x).

They are identified with the spin connection, ωab
μ (x) = −ωba

μ (x), and the tetrad fields, ωa5
μ (x) = kea

μ(x), where k is the contraction
parameter. For the limit k → 0 we obtain the ISO(3,1) gauge group, i.e., the commutative Poincaré gauge theory of gravitation.
The strength field associated with ωAB

μ (x) is [7]:

(2.2)FAB
μ = ∂μωAB

ν − ∂νω
AB
μ + (

ωAC
μ ωDB

ν − ωAC
ν ωDB

μ

)
ηCD,

where ηAB = diag(1,1,1,−1,1). Then, we have:

(2.3)Fa5
μν ≡ kT a

μν = k
[
∂μea

ν − ∂νe
a
μ + (

ωab
μ ec

ν − ωab
ν ec

μ

)
ηbc

]
,

(2.4)Fab
μν ≡ Rab

μν = ∂μωab
ν − ∂νω

ab
μ + (

ωac
μ ωdb

ν − ωac
ν ωdb

μ

)
ηcd + k

(
ea
μeb

ν − ea
ν eb

μ

)
,

where ηab = diag(1,1,1,−1). The Poincaré gauge theory that we are using has the geometric structure of the Riemann–Cartan
space U(4) with curvature and torsion [6]. The quantity T a

μν is interpreted as the torsion tensor and Rab
μν as the curvature tensor of

the Riemann–Cartan space–time defined by the gravitational fields ea
μ(x) and ωab

μ (x). By imposing the condition of null torsion
T a

μν = 0, one can solve for ωab
μ (x) in terms of ea

μ(x), i.e., the spin connection components are determined by tetrads (they are not
independent fields).

Now, we consider a particular form of spherically gauge fields of the SO(4,1) group given by the following ansatz [7]:

(2.5)e1
μ =

(
1

A
,0,0,0

)
, e2

μ = (0, r,0,0), e3
μ = (0,0, r sin θ,0), e0

μ = (0,0,0,A),

ω12
μ = (0,W,0,0), ω13

μ = (0,0,Z sin θ,0), ω23
μ = (0,0,− cos θ,V ),

(2.6)ω10
μ = (0,0,0,U), ω20

μ = ω30
μ = (0,0,0,0),
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where A, U , V , W and Z are functions only of the three-dimensional radius. The non-zero components of T a
μν and Rab

μν were
obtained in [7] using an analytical program designed for GRTensor II package of Maple:

(2.7)T 0
01 = −AA′ + U

A
, T 2

03 = rV sin θT 2
12 = A + W

A
, T 3

02 = −rV, T 3
13 = (A + Z) sin θ

A
,

and respectively

R01
01 = U ′, R23

01 = −V ′, R13
23 = (Z − W) cos θ, R01

01 = −UW, R13
01 = −V W, R03

03 = −UZ sin θ,

(2.8)R12
03 = V Z sin θR12

12 = W ′, R23
23 = (1 − ZW) sin θ, R13

13 = Z′ sin θ,

where A′, U ′, V ′, W ′ and Z′ denote the derivatives of first order with respect to the r-coordinate.
If we use (2.7), then the condition of null-torsion T a

μν = 0 gives the following constraints:

(2.9)U = −AA′, V = 0, W = Z = −A,

as we have already mentioned. Then, from the field equations for ea
μ(x)

(2.10)Ra
μ − 1

2
Rea

μ = 0,

where Ra
μ = Rab

μνē
ν
b, R = Rab

μνē
μ
a ēν

b and ē
μ
a is the inverse of ea

μ, we obtain the solution [7]

(2.11)A2 = 1 − α

r
,

where α is an arbitrary constant of integration. For α = 2GM

c2 we obtain the commutative Schwarzschild solution (G is the Newton
constant and M is the mass of the point-like source of the gravitational field). The corresponding metric

(2.12)gμν = ηabe
a
μeb

ν

has the following non-zero components

(2.13)g11 =
(

1 − 2GM

c2r

)−1

, g22 = g33

sin θ
= r, g00 = −

(
1 − 2GM

c2r

)
.

We emphasize that this solution is obtained from the commutative SO(4,1) gauge theory with a contraction k → 0 to the Poincaré
group ISO(3,1).

We will follow now Ref. [8] in order to obtain a deformation of gravitation by gauging the noncommutative de Sitter SO(4,1)

group. Then, by contraction to the Poincaré (inhomogeneous Lorentz) group ISO(3,1) we will obtain the deformed gauge fields
êa
μ(x, Θ). In the next two sections we will calculate these fields for the case of the Schwarzschild solution and define the corre-

sponding deformed metric ĝμν(x,Θ) up to the second order of the expansion in Θ .

3. Deformed gauge fields

We assume that the noncommutative structure of the space–time is determined by the condition

(3.1)
[
xμ, xν

] = iΘμν,

where Θμν = −Θνμ are constant (canonical) parameters. To develop the noncommutative gauge theory, we introduce the star
product “*” between the functions f and g defined over this space–time:

(3.2)(f ∗g)(x) = f (x)e
i
2 Θμν←−

∂μ
−→
∂ν g(x).

The gauge fields for the noncommutative case are denoted by ω̂AB
μ (x,Θ), and they are subject to the reality conditions [8,10,11]:

(3.3)ω̂AB+
μ (x,Θ) = −ω̂BA

μ (x,Θ), ω̂AB
μ (x,Θ)r ≡ ω̂AB

μ (x,−Θ) = −ω̂BA
μ (x,Θ),

with “+” denoting the complex conjugate.
By expanding ω̂ab

μ (x,Θ) in powers of the noncommutative parameter Θ ,

(3.4)ω̂AB
μ (x,Θ) = ωAB

μ (x) − iΘνρωAB
μνρ(x) + ΘνρΘλτωAB

μνρλτ (x) + · · · ,
the constraints (3.3) imply the properties

(3.5)ωAB
μ (x) = −ωBA

μ (x), ωAB
μνρ(x) = ωBA

μνρ(x), ωAB
μνρλτ (x) = −ωBA

μνρλτ (x), . . . .
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Using the Seiberg–Witten map [2], one obtains the following noncommutative corrections up to the second order [8]:

(3.6)ωAB
μνρ(x) = 1

4
{ων, ∂ρωμ + Rρμ}AB,

ωAB
μνρλτ (x) = 1

32

(−{
ωλ, ∂τ {ων, ∂ρωμ + Rρμ}} + 2

{
ωλ, {Rτν,Rμρ}} − {

ωλ, {ων,DρRτμ + ∂ρRτμ}}
(3.7)− {{ων, ∂ρωλ + Rρλ}, (∂τωμ + Rτμ)

} + 2
[
∂νωλ, ∂ρ(∂τωμ + Rτμ)

])AB
,

where

(3.8){α,β}AB = αACβB
C + βACαB

C , [α,β]AB = αACβB
C − βACαB

C

and

(3.9)DμRAB
ρσ = ∂μRAB

ρσ + (
ωAC

μ RDB
ρσ + ωBC

μ RDA
ρσ

)
ηCD.

As in the commutative case, we write ω̂a5
μ (x,Θ) = kêa

μ(x,Θ) and ω̂55
μ (x,Θ) = kφμ(x,Θ). Then we impose the condition of null

torsion T a
μν = 0 and not T̂ a

μν = 0, since by contraction k → 0 the quantity φμ(x,Θ) will drop out [8]. Using (3.6) and (3.7) we
obtain, in the limit k → 0, the deformed tetrad fields êa

μ(x,Θ) up to the second order:

(3.10)êa
μ(x,Θ) = ea

μ(x) − iΘνρea
μνρ(x) + ΘνρΘλτ ea

μνρλτ (x) + O
(
Θ3),

where

(3.11)ea
μνρ = 1

4

[
ωac

ν ∂ρed
μ + (

∂ρωac
μ + Rac

ρμ

)
ed
ν

]
ηcd,

ea
μνρλτ = 1

32

[
2{Rτν,Rμρ}abec

λ − ωab
λ

(
DρRcd

τμ + ∂ρRcd
τμ

)
em
ν ηdm − {

ων, (DρRτμ + ∂ρRτμ)
}ab

ec
λ

− ∂τ

{
ων, (∂ρωμ + Rρμ)

}ab
ec
λ − ωab

λ ∂τ

(
ωcd

ν ∂ρem
μ + (

∂ρωcd
μ + Rcd

ρμ

)
em
ν

)
ηdm + 2∂νω

ab
λ ∂ρ∂τ e

c
μ

− 2∂ρ

(
∂τω

ab
μ + Rab

τμ

)
∂νe

c
λ − {

ων, (∂ρωλ + Rρλ)
}ab

∂τ e
c
μ

(3.12)− (
∂τω

ab
μ + Rab

τμ

)(
ωcd

ν ∂ρem
λ + (

∂ρωcd
λ + Rcd

ρλ

)
em
ν ηdm

)]
ηbc.

We define also the complex conjugate êa+
μ (x,Θ) of the deformed tetrad fields given in (3.10) by:

(3.13)êa+
μ (x,Θ) = ea

μ(x) + iΘνρea
μνρ(x) + ΘνρΘλτ ea

μνρλτ (x) + O
(
Θ3).

Then we can introduce a deformed metric by the formula:

(3.14)ĝμν(x,Θ) = 1

2
ηab

(
êa
μ ∗ êb+

ν + êb
μ ∗ êa+

ν

)
.

We can see that this metric is, by definition, a real one, even if the deformed tetrad fields êa
μ(x,Θ) are complex quantities.

4. Second order corrections to Schwarzschild solution

Using the ansatz (2.5)–(2.6), we can determine the deformed Schwarzschild metric. To this end, we have to obtain first the
corresponding components of the tetrad fields êa

μ(x,Θ) and their complex conjugated êa+
μ (x,Θ) given by Eqs. (3.10) and (3.13).

With the definition (3.14) it is possible then to obtain the components of the deformed metric ĝμν(x,Θ).
To simplify the calculations, we choose the coordinate system so that the parameters Θμν are given as:

(4.1)Θμν =
⎛
⎜⎝

0 Θ 0 0
−Θ 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠ , μ, ν = 1,2,3,0.

The constant quantity Θ , which determines the noncommutativity of the space–time coordinates, has the dimension L2 (square of
length).

The non-zero components of the tetrad fields êa
μ(x,Θ) are:

(4.2)ê1
1 = 1

A
+ A′′

8
Θ2 + O

(
Θ3),

(4.3)ê1
2 = − i

(A + 2rA′)Θ + O
(
Θ3),
4
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(4.4)ê2
2 = r + 1

32

(
7AA′ + 12rA′2 + 12rAA′′)Θ2 + O

(
Θ3),

(4.5)ê3
3 = r sin θ − i

4
(cos θ)Θ + 1

8

(
2rA′2 + rAA′′ + 2AA′ − A′

A

)
(sin θ)Θ2 + O

(
Θ3),

(4.6)ê0
0 = A + 1

8

(
2rA′3 + 5rAA′A′′ + rA2A′′′ + 2AA′2 + A2A′′)Θ2 + O

(
Θ3),

where A′, A′′, A′′′ are first, second and third derivatives of A(r), respectively. The complex conjugated components can be easily
obtained from these expressions.

Then, using the definition (3.14), we obtain the following non-zero components of the deformed metric ĝμν(x,Θ) up to the
second order:

ĝ11(x,Θ) = 1

A2
+ 1

4

A′′

A
Θ2 + O

(
Θ4),

ĝ22(x,Θ) = r2 + 1

16

(
A2 + 11rAA′ + 16r2A′2 + 12r2AA′′)Θ2 + O

(
Θ4),

ĝ33(x,Θ) = r2 sin2 θ + 1

16

[
4

(
2rAA′ − r

A′

A
+ r2AA′′ + 2r2A′2

)
sin2 θ + cos2 θ

]
Θ2 + O

(
Θ4),

(4.7)ĝ00(x,Θ) = −A2 − 1

4

(
2rAA′3 + rA3A′′′ + A3A′′ + 2A2A′2 + 5rA2A′A′′)Θ2 + O

(
Θ4).

For Θ → 0 we obtain the commutative Schwarzschild solution with A2 = 1 − α
r

(see Eq. (2.11)).
It is interesting to remark that, if we choose the parameters Θμν as in (4.1), then the deformed metric ĝμν(x,Θ) is diagonal

as it is in the commutative case. But, in general, for arbitrary Θμν , the deformed metric ĝμν(x,Θ) is not diagonal even if the
commutative (non-deformed) one has this property. Therefore, we can conclude that the noncommutativity modifies the structure
of the gravitational field.

For the Schwarzschild solution we have:

(4.8)A(r) =
√

1 − α

r
, α = 2GM

c2
.

The function A(r) is dimensionless, but its derivatives A′, A′′ and A′′′ have respectively the dimensions L−1, L−2 and L−3. As a
consequence, all the components of the deformed metric ĝμν(x,Θ) in (4.7) have the correct dimensions.

Now, if we introduce (4.8) into (4.7), then we obtain the deformed Schwarzschild metric. Its non-zero components are:

ĝ11 = 1

1 − α
r

− α(4r − 3α)

16r2(r − α)2
Θ2 + O

(
Θ4),

ĝ22 = r2 + 2r2 − 17αr + 17α2

32r(r − α)
Θ2 + O

(
Θ4),

ĝ33 = r2 sin2 θ + (r2 + αr − α2) cos2 θ − α(2r − α)

16r(r − α)
Θ2 + O

(
Θ4),

(4.9)ĝ00 = −
(

1 − α

r

)
− α(8r − 11α)

16r4
Θ2 + O

(
Θ4).

As we see from (4.9), in the limit θ = 0, the usual Schwarzschild solution is obtained, as it should be, due to the use of perturbation
in θ according to the Seiberg–Witten map approach. We also note that all the non-zero components of the metric in (4.9), with the
exception of ĝ00, acquire a singularity in the θ2-correction term at the value r = α. This singularity pertains also to all the invariants
of the theory, such as the Ricci scalar, etc. For details and also on the cosmological consequences, we refer the reader to [20].

We can evaluate then the contributions of these corrections to the tests of general relativity. For example, if we consider the red
shift of the light propagating in a gravitational field [21], then we obtain for the case of the Sun:

(4.10)
�λ

λ
= α

2R
− α(8R−11α)

32R4
Θ2 + O

(
Θ4),

where R is the radius of the Sun. Since for the Sun we have α = 2GM

c2 = 2.95 × 103 m and R = 6.955 × 108 m, then we obtain
from (4.10):

(4.11)
�λ

λ
= 2 × 10−6 − 2.19 × 10−24 m−2 Θ2 + O

(
Θ4).

The noncommutativity correction has a value which is much too small, compared to the value which results from general relativity,
and the precision of the measurement is not sufficient to put a reasonable bound on the noncommutativity parameter.



578 M. Chaichian et al. / Physics Letters B 660 (2008) 573–578
5. Concluding remarks

Using the Seiberg–Witten map we have determined the noncommutativity corrections to the Schwarzschild solution up to the
second order in the parameters Θμν . Following Ref. [7], we reviewed first a de Sitter gauge theory of gravitation over a spherical
symmetric commutative Minkowski space–time. Then, a deformation of the gravitational field has been constructed along Ref. [8]
by gauging the noncommutative de Sitter SO(4,1) group and using Seiberg–Witten map. The corresponding space–time is also of
Minkowski type but endowed now with spherical noncommutative coordinates. We determined the deformed gauge fields up to
the second order in the noncommutativity parameters Θμν . The deformed gravitational gauge potentials (tetrad fields) êa

μ(x,Θ)

have been obtained by contraction of the noncommutative gauge group SO(4,1) to the Poincaré (inhomogeneous Lorentz) group
ISO(3,1). As an application, we have calculated these potentials for the case of the Schwarzschild solution and defined the corre-
sponding deformed metric ĝμν(x,Θ). The corrections appear only in the second order of the expansion in Θ , i.e., there are no first
order correction terms. For the calculations we used an analytical program conceived for the GRTensor II package of the Maple
platform.

We have considered also the red shift test in the noncommutative theory and determined the value of the relative displacement �λ
λ

for the case of Sun. The result shows that the correction is too small to have observable effects.
Having found the Schwarzschild solution for a noncommutative theory of gravity we have been breaking new ground towards

approaching the black-hole physics on noncommutative space–time [20].
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