
Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 843–846
c© International Academic Publishers Vol. 47, No. 5, May 15, 2007

Schwarzschild-de-Sitter Solution in Quantum Gauge Theory of Gravity
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Abstract We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of
the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then
we introduce the gauge-covariant derivative Dµ. The strength tensor of the gravitational gauge field is also obtained and
a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge
potentials Aα

µ(x) have spherical symmetry, depending only on the radial coordinate r is considered and an analytical
solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then deter-
mined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V
platform, along with several routines that we have written for our model.
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1 Introduction
In the gauge theory of gravity, the Poincaré group is lo-

calized usually, but the gravitational field is not character-
ized by gauge potentials. It is represented by metric field
and the effects of gravity are described by the curvature of
the space-time. The gauge theory based on the Poincaré
group proves to be correct at the classical level but it is
non-renormalizable. However, the gauge theories are fun-
damental in the field theory and, in particular, in the el-
ementary particle physics.[1] The three non-gravitational
interactions (electromagnetic, weak, and strong) are com-
pletely described by means of gauge theory in the frame-
work of the Standard Model (SM). First of all, the gauge
theory of the unitary groups SU(N) is of fundamental
importance in elementary particle physics. The SM of
strong and electroweak interactions is based on the gauge
theory of SU(3) × SU(2) × U(1) group. In addition, the
“Grand Unification” is described by the gauging of SU(5)
group.[1] Secondly, the Poincaré group (Lorentz transfor-
mations and space-time translations) is also of a funda-
mental importance in any field theory. After pioneering
works of Utiyama,[2] Sciama,[3,4] and Kibble[5] it was rec-
ognized that gravitation also can be formulated as a gauge
theory. The gauge groups considered in gauge theory of
gravitation are Poincaré group,[6] de-Sitter group,[7] affine
group,[8] etc. It is believed that the formulation of gravity
as a gauge theory on a Minkowski space-time could lead
to a consistent quantum theory of gravity.[9,10]

Recently, Wu[10] proposed a gauge theory of General
Relativity (GR) based on the gravitational gauge group
(G). In his theory, the gravitational interaction is con-
sidered as a fundamental interaction in a flat Minkowski

space-time, and not as space-time geometry. The gravi-
tation gauge group G consists of generalized space-time
translations, and the gravity is described by gauge poten-
tials. Contrarily, if there is gravitational field in space-
time, the space-time metric will not be equivalent to
Minkowski metric, and space-time will become curved. In
other words, in the traditional gravitational gauge theory,
the gravity is formulated in curved space-time. In this
paper, we will not follow this way. The underlying point
of view of this new quantum gauge general relativity, de-
veloped by Wu, is that the gravity is treated as a kind
of physical interactions in flat space-time and the gravi-
tational field is represented by gauge potential. For this
reason, we will not introduce the concept of curved space-
time to study quantum gravity in this paper. So, the
space-time is always flat, the gravitational field is repre-
sented by gauge potential, and gravitational interactions
are always treated as physical interactions.

In this paper we use the theory based on the gravi-
tational gauge group G to obtain a spherical symmetric
solution of the field equations for the gravitational po-
tentials on a Minkowski space-time. In Sec. 2 we define
the gravitational gauge group G and then we introduce
the gauge-covariant derivative Dµ. The strength tensor
of the gravitational gauge field is obtained and a gauge
invariant Lagrangian including the cosmological constant
is constructed starting from that proposed by Wu. The
field equations of the gauge potentials are written with
a gravitational energy-momentum tensor (Tg)µν on the
right-hand side. This tensor has the same expression as
in Ning Wu’s theory.
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Section 3 is devoted to the case of a model whose
gravitational gauge potentials Aα

µ(x) have spherical sym-
metry, depending only on the radial coordinate r. The
corresponding non-null components of the strength ten-
sor Fµν of the gravitational gauge field are obtained and
then the gauge field equations are written. In Sec. 4, an
analytical solution of these equations, which induce the
Schwarzschild-de-Sitter metric on the gauge group space,
is then determined.

All the calculations from Secs. 3 and 4 have been per-
formed by GR Tensor II computer algebra package, run-
ning on the Maple V platform, along with several routines
that we have written for our model. The integration of the
field equation was also performed by this computer alge-
bra package. The program is described in Sec. 5, where
we list also the instructions which allows to define and
calculate the quantities and the equations of the model.

2 Gravitational Gauge Group and Field
Equations
Wu proposed a new quantum gauge theory of general

relativity based on the gravitational gauge group G as lo-
cal symmetry.[1−5] In this theory, the gravitation is treated
as a physical interaction in a Minkowski (flat) space-time
M and the gravitational field is represented by gauge po-
tentials whose definition follows. It differs on General Rel-
ativity (GR) where the gravitational field is described by
the metric tensor of a curved space-time within a geomet-
ric model.

In this section we resume the theory of Wu and extend
the results to the case when the cosmological constant Λ
is introduced in model. In the following sections we sup-
pose that the gravitational gauge potentials have spherical
symmetry and obtain a Schwarzschild-de-Sitter type solu-
tion of the field equations.

The infinitesimal transformations of the group G are,
as usually, of the form,[10]

U(ε) ∼= 1− εαPα , α = 1, 2, 3, 0 , (1)
where εα are the infinitesimal parameters of the group and
Pα = −i∂α are the generators of gauge group. It is known
that these generators commute each other,

[Pα, Pβ ] = 0 . (2)
However, in accord with Wu model, this does not mean
that the group G is Abelian, that is, its elements do not
commute,[10]

[U(ε1), U(ε2)] 6= 0 . (3)

It is emphasized that there is a difference between the
group T of space-time translations and the gravitational
gauge group G. Space-time translations of T are coor-
dinate (passive) transformations, that is, the objects or
fields (physical system) are fixed in space-time, while the
coordinates themselves undergo transformations. Con-
trarily, under the transformations of G, the space-time

system of coordinates is fixed and the physical system un-
dergoes (active) transformations.

As usually, one introduces the gauge gravitational field
with values into the Lie algebra of the group G:

Aµ(x) = Aα
µ(x)Pα , µ = 1, 2, 3, 0 , (4)

where Aα
µ(x) are the gravitational gauge potentials, and

then a gauge-covariant derivative is defined as

Dµ = ∂µ − igAµ(x) . (5)

Here g denotes the gauge coupling constant of the gravi-
tational interactions. The corresponding strength tensor
Fµν(x) = Fα

µν(x)Pα, with values in the Lie algebra of G,
has the components[10]

Fα
µν(x) = Gβ

µ∂βAα
ν −Gβ

ν∂βAα
µ , (6)

where
Gα

µ(x) = δα
µ − gAα

µ(x) (7)

are new gauge potentials. We suppose that these new
potentials admit the inverses Ḡµ

α(x) with the usual prop-
erties:

Ḡµ
αGβ

µ = δβ
α , Ḡµ

αGα
ν = δµ

ν . (8)

Following Refs. [10] ∼ [12], we define a metric tensor on
the gravitational gauge group space by:

gαβ = ηµνḠµ
αḠν

β , (9a)

gαβ = ηµνGα
µGβ

ν , (9b)

where ηµν = diag (1, 1, 1,−1) is the metric tensor of the
Minkowski space-time M , and ηµν denotes its inverse.

In order to generalize the results of Wu to the
case when the cosmological constant is present in the
model,[13,14] we consider the integral of action for the grav-
itational gauge potentials under the form:

S =
∫ √

−det(gαβ) L d4x , (10)

where det(gαβ) is the determinant of the metric tensor
gαβ , and L is the Lagrangian density of the gravitational
field,

L0 = − 1
16

ηµρηνσgαβFα
µνF β

ρσ −
1
8
ηµρḠν

βḠσ
αFα

µνF β
ρσ

+
1
4
ηµρḠν

αḠσ
βFα

µνF β
ρσ +

Λ
2g2

. (11)

Taking δS = 0 with respect to gravitational gauge poten-
tials Aα

µ(x),[15,16] we obtain the following field equations:

∂µ

(1
4
ηµρηνσgαβFσ

ρσ −
1
4
ηνρFµ

ρα +
1
4
ηµρF ν

ρα

− 1
2
ηµρδν

αF β
ρβ +

1
2
ηνρδµ

αF β
ρβ

)
− Λ

2g
Ḡν

α

= − g(Tg)ν
α , (12)

where (Tg)ν
α is the gravitational energy-momentum tensor

considered as the source of the gravitational field.[10] This
tensor has the same expression as in Wu’s works[10−12]

and will not be given here. Its expression is given in the
computing program listed in Sec. 5. In what follows, we
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will write the field equations (12) for the case when the
gauge potentials have spherical symmetry,[17−19] and ob-
tain a solution of Schwarzschild-de-Sitter type.

3 Spherically Symmetric Model
We consider now a model of gauge theory of gravita-

tion having the gravitational gauge group G as local group
of symmetry. The base manifold is a four-dimensional
Minkowski space-time M endowed with spherical coordi-
nates (x1, x2, x3, x0) = (r, θ, ϕ, t). The gravitational gauge
potentials Aα

µ(x) are chosen under the form:

Aα
µ =



A(r) 0 0 0

0
r − 1
gr

0 0

0 0
r sin θ − 1
gr sin θ

0

0 0 0 − A(r)
1− gA(r)


, (13)

where A(r) is a function of the radial coordinate r only,
and g is the coupling constant of the gravitational field in-
troduced into the previous section. Then, the new gauge
potentials Gα

µ(x), defined by Eq. (7), have the form:

Gα
µ =



1− gA(r) 0 0 0

0
1
r

0 0

0 0
1

r sin θ
0

0 0 0
1

1− gA(r)

 . (14)

Their inverse components are

Ḡµ
α =


1

1− gA(r)
0 0 0

0 r 0 0
0 0 r sin θ 0
0 0 0 1− gA(r)

 . (15)

Having these potentials chosen, we can calculate the
components Fα

µν(x) of the corresponding strength tensor
given in Eq. (6). For such a purpose we used an analyt-
ical computing program written by us in GR Tensor II
package working on the Maple platform. The description
of this program is given in Sec. 5. Here we only list the

non-null components of the strength tensor:

F 2
12 = sin θ , F 3

13 =
1− gA(r)

gr2
,

F 0
10 = − A′(r)

1− gA(r)
, F 3

23 =
cos θ

gr2 sin2 θ
. (16)

We calculate also the components gαβ of the metric
tensor and its inverse which are defined in Eqs. (9a) and
(9b). The results are

gαβ =


1

(1−gA(r))2 0 0 0
0 r2 0 0
0 0 r2 sin2 θ 0
0 0 0 −(1−gA(r))2

 , (17)

and respectively

gαβ =


(1−gA(r))2 0 0 0

0 1
r2 0 0

0 0 1
r2 sin θ 0

0 0 0 − 1
(1−gA(r))2

 . (18)

Now, we list here only a few of the simpler components of
the gravitational energy-momentum tensor:

T 1
1 = − A(r)(2− gA(r))

2gr2(1− gA(r))
+

A′(r)
gr

− 1
g2r2 sin3 θ

+
1

2g2r2 sin θ
, (19a)

T 2
1 =

cos θ

g2r3 sin2 θ
, T 1

2 = − (1− gA(r))
2g2r2 sin2 θ

, (19b)

where A′(r) denotes the derivative of the function A(r)
with respect to the r variable. The other non-null compo-
nents which are not listed here are T 2

2 , T 3
3 , and T 0

0 , and
they can be easily obtained by running the computing
program described in Sec. 5.

4 Solution of Field Equations
We can write now the field equations (12) of the spheri-

cally symmetric gauge gravitational potentials Aα
µ(x) cho-

sen in previous Section. Using the analytical computing
program described in Sec. 5, we obtained the following
four field equations:

1
2gr2(1− gA(r))

(2g2rA(r)A′(r)− 2grA′(r) + g2A(r)2 − 2gA(r) + Λr2) = 0 , (20)

1
2g

(
2g2A(r)A′(r) + g2rA(r)A′′(r)− 2gA′(r) + g2rA′(r)2 − grA′′(r) + Λr

)
= 0 , (21)

sin θ

2g

(
2g2A(r)A′(r) + g2rA(r)A′′(r)− 2gA′(r) + g2rA′(r)2 − grA′′(r) + Λr

)
= 0 , (22)

1− gA(r)
2gr2

(
2g2rA(r)A′(r)− 2grA′(r) + g2A(r)2 − 2gA(r) + Λr2

)
= 0 . (23)

where A′′(r) is the derivative of second order of the func-
tion A(r) with respect to variable r. It is easy to verify
that these equations are equivalent if 1 − gA(r) 6= 0, so
that we have only one independent field equations for one
unknown function A(r). The constraint 1 − gA(r) 6= 0 is

in accord with the definition (13) of the gauge potentials

Aα
µ(x).

In order to obtain a solution for A(r), we consider the

field equation (20) only, and introduce a new unknown
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function,
y(r) = (1− gA(r))2 . (24)

Then, equation (20) becomes

ry′(r) + y(r) = 1− Λr2 , (25)

or, equivalently,

(ry(r))′ = 1− Λr2 . (26)

The integration of Eq. (26) is directly and we finally
obtain the solution,

y(r) = 1 +
α

r
− Λ

3
r2 , (27)

where α is an arbitrary constant of integration. Then,
introducing Eq. (27) into Eq. (24), we obtain the solution

A(r) =
1±

√
1 + (α/r)− (Λr2/3)

g
. (28)

If we choose α = −2Gm, where m is supposed to be the
mass of the point-like source of our gravitational field,
then the result (28) corresponds to a Schwarzschild-de-
Sitter type solution having the square of the line element
[see Eq. (17)]:

ds2 =
dr2

1− (2Gm/r)− (Λr2/3)
+ r2(dθ2 + sin2 θdϕ2)

−
(
1− 2Gm

r
− Λ

3
r2

)
dt2 . (29)

We remember that this line element is defined on the grav-
itational gauge group space and that the space-time re-
mains a Minkowski (flat) one.

5 Analytical Computing Program
In order to calculate the components of indexed ob-

jects (in particular tensors) or defining new tensors by us-
ing GR Tensor II package, first of all, we have to specify
the space-time geometry.[17,20] In our computing program

we load the metric of the space-time using the qload (mink
2) command. The Minkowski metric of the space-time is
denoted in our program by eta1 {miu niu} and its inverse
by eta1inv {miu niu}.

The command grdef( ) is included to facilitate the
specification of new tensors in a simple and natural man-
ner. It allows tensors to be defined either as an equation
in terms of previously defined tensors, or by manual entry
of their components. Inner and outer products of ten-
sors, symmetrization, and derivatives can all be specified
as part of the tensor definitions. Furthermore, index sym-
metries of the newly defined tensors can be included. The
integration of the field equations has been done by com-
mand “with (DEtools, odeadvisor)”.

The gauge potentials Aα
µ (x), denoted by A{∧alpha

miu}, were introduced by manual entry of their compo-
nents, and the new gauge potentials Gα

µ (x), defined in
Eq. (7), have been denoted by Gb {∧alpha miu} and their
inverses by Gbinv {∧alpha miu}.

The analytical program allows to calculate: the com-
ponents of the strength tensor field Fα

µν , denoted by
F {∧alpha miu niu}, the components of the metric gαβ ,
denoted by gb {alpha beta}, the components gαβ of its
inverse, denoted by gbinv{∧alpha ∧ beta} of the grav-
itational energy-momentum tensor (Tg)ν

α, denoted by
Tg {∧niu alpha}, and the field equations, denoted in our
program by EQ {∧niu alpha}. The expression under the
derivative ∂µ on the left-hand side of the gauge field equa-
tions (12) has been denoted by EX {∧miu ∧ niu alpha}.
The differential equation (25) or (26) has been denoted by
ode and then it was integrated by the commands: odead-
visor (ode) and dsolve (ode). The comments are inserted
as instructions noted by symbol #.
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