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Twist as a symmetry principle
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Abstract

Based on the analysis of the most natural and general ansatz, we conclude that the concept of twist symmetry, originally obtained for the
noncommutative space–time, cannot be extended to include internal gauge symmetry. The case is reminiscent of the Coleman–Mandula theorem.
Invoking the supersymmetry may reverse the situation.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

For field theories on the noncommutative space–time with
Heisenberg-like commutation relation

(1.1)[x̂μ, x̂ν] = iθμν,

where θμν is an antisymmetric matrix, the traditional frame-
work has been the Weyl–Moyal correspondence, by which to
each field operator Φ(x̂) corresponds a Weyl symbol Φ(x), de-
fined on the commutative counterpart of the space–time. An
essential aspect of this correspondence is that, in the action
functional, the products of field operators, e.g. Φ(x̂)Ψ (x̂) is re-
placed by the Moyal �-product of Weyl symbols, Φ(x) � Ψ (x),
where

(1.2)� = exp

(
i

2
θμν

←−
∂ μ−→

∂ ν

)
.

In this correspondence, the operator commutation relation (1.1)
becomes

(1.3)[xμ, xν]� = xμ � xν − xν � xμ = iθμν
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and noncommutative models have been built by simply taking
their commutative counterparts and replacing the usual multi-
plication by �-product (see [1] and references therein).

It turns out that such noncommutative models, although they
lack Lorentz symmetry, are invariant under the twisted Poincaré
algebra [2], deformed with the Abelian twist element

(1.4)F = exp

(
i

2
θμνPμ ⊗ Pν

)
,

where Pμ are the generators of translations. The twist induces
on the algebra of representation of the Poincaré algebra the de-
formed multiplication

(1.5)

m ◦ (φ ⊗ ψ) = φψ → m� ◦ (φ ⊗ ψ)

= m ◦F−1(φ ⊗ ψ) ≡ φ � ψ,

which is nothing else but the �-product (1.2). Important con-
sequences for the representation theory of the noncommutative
fields arise from here.

In parallel with the NC QFT models, NC gauge theories
have been constructed using the same prescription, of taking
the Lagrangian of the commutative theory and replacing the
usual multiplication by the �-product (1.2) [3]. By construc-
tion, such theories are twisted-Poincaré invariant, if we use the
twist element (1.4). However, as far as the gauge invariance is
concerned, the models are invariant under �-gauge transforma-
tions. For example, in the case of the gauge U�(n) group, an
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arbitrary element of the group will be

(1.6)U(x) = exp�

(
iαa(x)Ta

)
,

where Ta , a = 1, . . . , n2 are the generators of the U(n) group,
with the algebra [Ta,Tb] = ifabcTc, αa(x), a = 1, . . . , n2 are
the gauge parameters and the �-exponential means

(1.7)

exp�

(
iαa(x)Ta

)
= 1 + iαa(x)Ta + 1

2! (i)
2αa(x) � αb(x)TaTb + · · · .

The use of the �-product in the formulation of gauge theo-
ries imposes strict constraints on the noncommutative gauge
symmetry, among which is the fact that only NC gauge U(n)

groups close (and not SU(n)). Moreover, there is a no-go the-
orem [4] stating that only certain representations of the gauge
group are allowed (fundamental, anti-fundamental and adjoint)
(see also [5]) and the matter fields can be charged under at
most two gauge groups. We have to emphasize that although
these gauge theories are twisted-Poincaré invariant, the �-gauge
transformations are implemented separately, in the sense that
the coproduct of the gauge generators is not twisted with the
Abelian twist (1.4).

Recently, an attempt was made to twist also the gauge alge-
bra, i.e. to extend the Poincaré algebra by the gauge algebra,
as semidirect product, and to twist the coproduct of the gauge
generators with the same Abelian twist (1.4) [6,7]. The result
seemed to be spectacular: the same theories, which previously
were shown to be subject to the no-go theorem [4,5], were now
claimed to be invariant under any usual (not noncommutative)
gauge group and to admit any representations, just as in the
commutative case. The latter approach was shown [8] however
to be in conflict with the very idea of gauge transformations,
since it assumed implicitly that if a field is transformed ac-
cording to a given representation of the gauge algebra, then its
derivatives of any order also transform according to the repre-
sentations of the gauge algebra, which is obviously not the case.

The question arises whether the concept of twist appears as a
symmetry principle in constructing NC field theories: any sym-
metry that such theories may enjoy, be it space–time or internal
symmetry, global or local, should be formulated as a twisted
symmetry. In pursuit of this idea, in this Letter we take the most
general ansatz for a non-Abelian twist, which, in the absence of
the gauge interaction, reduces to the Abelian twist (1.4). We
shall show that the twisting of the gauge transformations is not
possible, in a manner compatible with the representations of the
gauge algebra and keeping at the same time the Moyal space de-
fined by (1.3) as underlying space of the theory.

2. Necessity of a symmetry principle for noncommutative
field theories

The necessity of a new approach to noncommutative gauge
theories arises both from internal gauge symmetries and the
gravitational theory.
Noncommutative internal gauge symmetry

The essential physical implication of the twisted Poincaré
symmetry is that the representation content of this quantum
symmetry and of usual Poincaré symmetry are the same. As
a consequence, the asymptotic fields are the same in commu-
tative and noncommutative field theories. This legitimates the
perturbative approach to NC QFT, starting from the representa-
tion content of Poincaré algebra (for details, see [2]).

On the other hand, any application such as model building
has to circumvent one way or another the no-go theorem [4,
5]. The ways for by-passing the restrictions imposed by the no-
go theorem (e.g. by dressing the fields with Wilson lines or by
invoking enveloping algebra-valued fields) are not unique and
lack justification. A twisted symmetry principle would provide
a truly solid base for the formulation of noncommutative gauge
theories.

Noncommutative gravitational theory

NC gravitational effects have been recently calculated [9]
from string theory with antisymmetric background field, i.e. in
the same theory as the one which gave rise in the low-energy
limit to the usual noncommutative field theories [1]. It turns out
that, in the case of NC gravitational interactions, string theory
contains a much richer dynamics than the one of the theories
constructed [10] in terms of Moyal �-products alone, by twist-
ing the algebra of diffeomorphisms with the frame-dependent
twist element (1.4). The inconsistencies are caused by the fact
that the deformation of general coordinate transformations is
not so far done in a frame-independent manner. In other words,
when the twist element is chosen as (1.4), the frame-dependent
Moyal �-product is fixed once for all by the choice of the twist
and thus it does not transform at all. Since the diffeomorphisms
are basically external gauge transformations, the situation is
technically similar [8] to the one which results when one at-
tempted to deform the internal gauge transformations with the
same twist element (1.4).

It thus appears that the currently studied noncommutative
gauge and gravitational theories show incompatibilities with
respect to the twisted Poincaré symmetry, besides internal in-
consistencies mentioned above. It is therefore desirable to find a
general symmetry principle (and the applicability of the twisted
Poincaré symmetry leads to the conclusion that this general
symmetry will be a quantum one), starting from which one
could construct noncommutative gauge and gravitational the-
ories free of internal contradictions.

3. Gauge transformations and the concept of twist

Let us consider the Lie algebra G as an internal symmetry.
The infinitesimal generators of the algebra G are denoted by Ta ,
a = 1, . . . ,m, and they satisfy the commutation relations

(3.1)[Ta,Tb] = ifabcTc.
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Subsequently we gauge the algebra of internal symmetry G and
define

(3.2)α(x) = αa(x)Ta

as Hermitian generators of the infinitesimal gauge transforma-
tions. Since the gauge generators do not commute with the
generators of the global Poincaré algebra, we can extend the
Poincaré algebra P by semidirect product with the gauge gen-
erators, the purpose being to eventually deform the enveloping
algebra of this semidirect product, U(P � G), considered as a
Hopf algebra, by an appropriately chosen twist [11] (see also
[12]). The algebra of representation for U(P � G) is the alge-
bra of fields A, defined on the Minkowski space. The action of
the generators of the Hopf algebra on the fields is the usual one,
even upon twisting. In particular, for the infinitesimal gauge
transformations we have

(3.3)δαΦ(x) = iα(x)Φ(x), δαΦ†(x) = −iΦ†(x)α(x),

where α(x) is defined in (3.2) and Φ(x) ∈ A. We emphasize
the absence of a star-product in (3.3), unlike the case of the
traditional noncommutative gauge theories [3].

The principle of gauge invariance [13] requires the intro-
duction of gauge fields if we want the action of a theory to be
symmetric under local transformations. By their transformation
properties, the gauge fields have the role to compensate for the
terms arising from the fact that the derivatives of fields (in the
kinetic terms) do not transform according to the representations
of the gauge algebra, like the fields themselves do. With the
gauge fields Aμ(x) = Aa

μ(x)Ta transforming in the adjoint rep-
resentation of the gauge algebra as

(3.4)δαAμ(x) = i
[
α(x),Aμ(x)

] + ∂μα(x),

one constructs the covariant derivative

(3.5)Dμ = ∂μ − iAμ,

such that the combination DμΦ(x) transforms again like the
field itself under gauge transformations, i.e.

(3.6)δαDμΦ(x) = iα(x)
(
DμΦ(x)

)
.

Moreover, applying any number of covariant derivatives to a
field, the result will transform in the same way:

(3.7)δαDμ1 · · ·DμnΦ(x) = iα(x)
(
Dμ1 · · ·DμnΦ(x)

)
,

in other words,

(3.8)δαDμ1 · · ·Dμn = [
α(x),Dμ1 · · ·Dμn

]
.

We have to point out that, even upon twisting U(P � G), the
covariant derivative has to act as usual on the matter fields, i.e.
without any star-product between the gauge field Aμ(x) and the
matter field Φ(x). This is because the covariant derivative is in
effect a linear combination of generators of U(P � G):

(3.9)Dμ = i
(
Pμ − Aa

μTa

)
,

where the realization of Pμ on the Minkowski space, Pμ =
−i∂μ, is used.
4. Non-Abelian twist of U(P ��� G)

In [8] it was shown in detail that the use of the Abelian twist
(1.4) for deforming the Hopf algebra U(P � G) is not compat-
ible with the concept of gauge transformations. We recall that
the reason for this conflict is the fact that the derivatives of a
field do not transform according to the representations of the
gauge algebra, as the fields themselves do.

However, the covariant derivatives of a field transform ex-
actly according to the same representation as the field itself, as
we have mentioned above. Thus the option of defining a non-
Abelian twist element involving covariant derivatives naturally
occurs:

(4.1)T = exp

(
− i

2
θμνDμ ⊗ Dν +O

(
θ2)),

where the terms of higher order in θ contain as well products
of covariant derivatives and remain to be found.1 The twist ele-
ment (4.1) has to satisfy the twist conditions [12], i.e.:

(4.2)T12(Δ0 ⊗ id)T = T23(id ⊗ Δ0)T ,

(4.3)(ε ⊗ id)T = 1 = (id ⊗ ε)T ,

where Δ0 is the symmetric coproduct of the generators of the
Lie algebra P � G, such that

(4.4)Δ0(Y ) = Y ⊗ 1 + 1 ⊗ Y, for Y ∈P � G,

ε :U(P � G) → C is the counit, satisfying

(4.5)(id ⊗ ε) ◦ Δ0 = id = (ε ⊗ id) ◦ Δ0

and T12 = T ⊗ 1 and T23 = 1 ⊗ T . By the twist element (4.1)
one deforms the symmetric coproduct (4.4):

(4.6)Δ0(Y ) 	→ T Δ0(Y )T −1.

The twisting of the coproduct of the generators requires a
corresponding deformation of the product of fields into a star
product, which we shall denote by �, to differentiate it from
the Weyl–Moyal �-product:

(4.7)

m ◦ (Φ ⊗ Ψ ) = ΦΨ → m� ◦ (Φ ⊗ Ψ ) = m ◦ T −1(Φ ⊗ Ψ )

≡ Φ�Ψ.

Remark that the actual form of the covariant derivatives in the
second term of (4.7) is given by the respective fields on which
they act, i.e. by their representation under the gauge algebra.
The associativity of the �-product corresponding to the non-
Abelian twist is equivalent to the fulfillment of the twist condi-
tion (4.2).

Since the purpose of the non-Abelian twist (4.1) is to gener-
alize the Abelian twist (1.4), in a manner which would con-
sistently include the noncommutative gauge transformations,
the new star-product induced by the non-Abelian twist has to

1 For the relaxation of the exponential form (4.1) to an arbitrary invertible
function for the twist element T , see the end of this section. The exponential
form (4.1) however is taken, to start with, by requiring a “correspondence prin-
ciple”, that the twist (4.1) would reduce to the Abelian one (1.4) in the absence
of gauge fields.
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reduce to the usual Weyl–Moyal star-product for ordinary func-
tions. Indeed, ordinary functions on the Minkowski space have
to be considered in the 1-dimensional (trivial) representation of
the gauge group G, i.e.

eiαa(x)Taf (x) = f (x) + iαa(x)Taf (x) + · · · = f (x),

which implies Taf (x) = 0. This means that for ordinary func-
tions we have Dμf (x) = ∂μf (x), from which it should follow:

m ◦ T −1(f (x) ⊗ g(x)
)

= m ◦ exp

(
i

2
θμν∂μ ⊗ ∂ν

)(
f (x) ⊗ g(x)

)
(4.8)≡ f (x) � g(x).

The same result has to apply to the fields in the trivial (1-
dimensional) representation of the gauge group. It is then clear,
by taking f (x) = xμ and g(x) = xν in the above, that the non-
Abelian twist would lead to gauge theories on the same non-
commutative space–time with the commutation relation (1.3).
Therefore, in finding the concrete form of the non-Abelian twist
(4.1) we have to fulfill the constraint that the exponential has to
reduce to the usual exponential function of (1.4) when its argu-
ment contains usual commuting derivatives.

If we take in the non-Abelian twist (4.1) only the term of
first order in θ , one can straightforwardly show that the twist
condition (4.2) is not fulfilled already in the second order in θ ,
while (4.3) and (4.8) are. The second order terms which do not
cancel in (4.2) are, in the l.h.s.

1

2

(
− i

2

)2

θμνθρσ (Dρ ⊗ Dμ ⊗ Dσ Dν + Dμ ⊗ Dρ ⊗ Dσ Dν

(4.9)+ 2DμDρ ⊗ Dν ⊗ Dσ + 2Dμ ⊗ DνDρ ⊗ Dσ )

and in the r.h.s.

(4.10)

1

2

(
− i

2

)2

θμνθρσ (2Dρ ⊗ Dμ ⊗ DνDσ + DρDμ ⊗ Dσ ⊗ Dν

+ DρDμ ⊗ Dν ⊗ Dσ + 2Dρ ⊗ DμDσ ⊗ Dν).

One may argue that there are still first order terms which
were not taken into account, i.e. θμν1 ⊗ Fμν and θμνFμν ⊗ 1.
However, such terms will not contribute to the cancelation of
(4.9) and (4.10), because they will introduce only terms in
which the indices of the second rank tensor, be it on the first,
second or last place, correspond to the same θ , i.e. Fμν ⊗Dρ ⊗
Dσ , Dρ ⊗ Fμν ⊗ Dσ or Dρ ⊗ Dσ ⊗ Fμν , while the indices
of the second rank tensor in the terms to be canceled of (4.9)
and (4.10) correspond to different θs. Moreover, if one writes
an action with the new �-product replacing the usual multipli-
cation in the Lagrangian, the terms coming from θμν1 ⊗ Fμν

and θμνFμν ⊗ 1 will give the same contribution, upon partial
integration, like the terms coming from θμνDμ ⊗ Dν . For this
reasons we decide to omit other terms of the first order in θ

except θμνDμ ⊗ Dν .
The second order terms not canceled in the twist condition

suggest the exponent in the form of a series in θ . The general
form of such a series would be cumbersome to write down,
however, we can easily write the most general second order
term which satisfies (4.8) and impose the twist condition (4.2)
up to second order in θ .

Possible typical second order terms are:

θμνθρσ (1 ⊗ DμDνDρDσ ) and

(4.11)θμνθρσ (DμDνDρDσ ⊗ 1),

θμνθρσ (Dμ ⊗ DνDρDσ ) and

(4.12)θμνθρσ (DμDνDρ ⊗ Dσ ),

(4.13)θμνθρσ (DμDν ⊗ DρDσ ),

with all the permutations of indices of the covariant derivatives.
The terms of the type (4.11) satisfy (4.8), but their structure
is such, that they cannot cancel the terms which appear in the
second order from the first term of the exponential. The terms
of the type (4.13) do not satisfy in general (4.8) but the terms
which satisfy the latter condition cannot help in the cancelation.
The only terms which satisfy (4.8) and could contribute to the
cancelation are (4.12) and we shall add only such terms.

Since the order of the indices is important in the terms (4.12)
with permutations, there are altogether 2 4!

(4−3)! = 2 × 24 of this
type. However, due to the antisymmetry of the indices (μ, ν)

and (ρ,σ ), only 2×3 combinations of indices are independent.
Thus, the most general form of (4.1) with meaningful terms of
second order in θ , which satisfy (4.8), is:

T = exp

{(
− i

2
θμνDμ ⊗ Dν

+ 1

2

(
− i

2

)2

θμνθρσ
[
aDμ ⊗ Dσ DνDρ

+ bDμ ⊗ DνDσ Dρ + cDμ ⊗ Dσ DρDν

+ a′Dσ DνDρ ⊗ Dμ + b′DνDσ Dρ ⊗ Dμ

(4.14)+ c′Dσ DρDν ⊗ Dμ

] +O
(
θ3)},

where a, b, c, a′, b′, c′ are constants which have to be deter-
mined by imposing (4.2) up to the second order in θ . Typi-
cally, the terms which do not cancel out in the twist condi-
tion are of the form θθD ⊗ D ⊗ DD, θθDD ⊗ D ⊗ D and
θθD ⊗ DD ⊗ D. Imposing the cancelation of the terms of the
type θθD ⊗ D ⊗ DD, one obtains a = −1 and a + b + c = 0,
while from the terms of the type θθDD ⊗ D ⊗ D one obtains
a′ = −1 and a′ + b′ + c′ = 0. However, when requiring the
cancelation of the terms of the type θθD ⊗ DD ⊗ D, one ob-
tains a + a′ = 2 and a + b + c = −(a′ + b′ + c′). Obviously
the three conditions cannot be satisfied simultaneously, conse-
quently there are no second order terms, formulated in terms of
covariant derivatives, which can lead to the fulfillment of the
twist condition (4.2) up to the second order in θ .

Omitting the requirement that the non-Abelian twist should
reduce to the usual twist (i.e. with the usual Moyal �-product)
when gauge fields are absent allows for other possible second
order terms, such as (4.13), with all possible permutation of
the indices of covariant derivatives. We have verified that even
by admitting such terms, the twist condition (4.2) cannot be
satisfied. We have also verified that, by relaxing the require-
ment of exponential form for the twist as in (4.1) to an arbitrary
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invertible function F(X), i.e. by taking the first and second
derivatives F ′(0) and F ′′(0) (the coefficients of the θ -expansion
of the twist) to be arbitrary, the twist condition (4.2) still can-
not be satisfied. Thus the result is general and is not based on
the requirement of “correspondence principle”.

We can therefore conclude that a non-Abelian twist element,
which would generalize (1.4) in a gauge covariant manner can-
not exist.

5. Conclusions

In this Letter we have tackled the question whether the
twist could be regarded as a symmetry principle for the NC
field and gauge theories. To this end, we proposed a new, non-
Abelian, twist element (4.1) for the formulation of noncommu-
tative gauge theories on Moyal spaces. The new star-product
arising in this way, containing covariant derivatives in place of
the usual derivatives, would insure both the twisted Poincaré
and the twisted gauge invariance of noncommutative (gauge)
field theories. We have shown, however, that the non-Abelian
twist element, although gauge covariant, does not satisfy the
twist conditions. The result does not depend on the exponential
form for the twist as in (4.1), but is valid for an arbitrary invert-
ible functional form. Having in view also the analysis of [8],
which showed that the Abelian twist (1.4) cannot be used for
twisting gauge transformations, it appears that there is no way
to reconcile the twist condition and the gauge invariance prin-
ciple. Let us mention that by using the Seiberg–Witten map [1],
which provides a connection between a NC gauge symmetry
and the corresponding commutative one as a power series in
the non-commutativity parameter θμν , the resulting Lagrangian
or action [14] cannot be brought to the form given by a twist.

It is intriguing that the external Poincaré symmetry and
the internal gauge symmetry cannot be unified under a com-
mon twist. The situation is reminiscent of the Coleman–
Mandula theorem [15] (for a pedagogical presentation and
other references, see [16]), although not entirely, since the
Coleman–Mandula theorem concerns global symmetry and
simple groups. However, one can envisage that supersymme-
try [17], due to its intrinsic internal symmetry, may reverse the
situation, and a noncommutative supersymmetric gauge theory
can be constructed by means of a twist [18].
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