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Abstract

We study the regularization of the gauge theory of gravitation using
the de Sitter group as symmetry of the model. The method of generalized
zeta-function is used to realize the regularization and the gauge group
is considered as an internal symmetry. An effective integral of action is
obtained and a comparison with other results is given.

1 INTRODUCTION

Most of the existing gauge theories of gravitation adopt a geometrical
description of gravity. Namely, the Poincaré group is considered partly as
a space-time partly as an internal symmetry group. The local extension of
its space-time part becomes then the diffeomorphism group and the gauge
theory is invariant under general coordinate transformations and local Lorentz
frame rotations. Therefore, this local symmetry group is connected with the
geometry of the space-time.

It is possible also to consider space-time symmetries (for example Poincaré
or de Sitter in this paper) as purely inner symmetries [1, 2]. This leads to a
description of the gauge theory of gravitation which is in a complete analogy
with the description of inner symmetries as groups of generalized “rotations”
in field space.
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In this paper we consider the group de Sitter (DS) as purely inner symme-
try and develop a gauge theory of gravitation. We obtain an effective integral
of action which automatically includes the cosmological constant. The method
of generalized zeta-function is used to study the regularization of the theory.

In Section 2 we introduce the DS gauge group and give in an explicitly
form its equation of structures. The gauge covariant derivative is introduced
as usually, considering the DS group as an internal symmetry and introducing
the corresponding gauge fields. The strength field is defined as the commutator
of two gauge covariant derivatives.

The regularization of the theory is studied in Section 3, using the method
of generalized zeta function. The change of the partition function with respect
to scale transform is calculated for the case of a spinor Dirac field interacting
with the gravitational field described by the gauge potentials. Then, a minimal
field gauge action, compatible with regularization requirements and including
the cosmological constant, is determined.

Finally, some concluding remarks are given in the Section 4. It is empha-
sized that in our model there is no any direct interrelation between gravity and
the structure of space-time. At quantum level it may conceptually be easier to
deal with a field theoretical description of gravitation free of any geometrical
aspects.

2 DE SITTER GAUGE THEORY

We consider a gauge theory of gravitation having de Sitter (DS) group
as local symmetry. Let XA, A = 1, 2, · · · , 10, be a basis of DS Lie algebra with
the corresponding equations of structure given by [1]

[XA, XB] = if C
AB XC (1)

where f C
AB are the constants of structure whose expressions will be given

below [see Eq. (3)].
In order to write the constant of structures f C

AB in a compact form, we
use the following notations for the index A:

A =

{
a = 0, 1, 2, 3

[ab] = [01] , [02] , [03] , [12] , [13] , [23]
. (2)

This means that A can stand for a single index like 2 as well as for a pair
of indices like [01], [12], etc. The infinitesimal generatorsXA are interpreted as:
XA = Pa (energy-momentum operators) and X[ab] = Mab (angular momentum
operators) with the property Mab = −Mba. The constants of structure f C

AB
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have then the following expressions:

f a
bc = f ab

c[de] = f a
[bc][de] = 0

f
[ab]

cd = 4λ2
(
δ b
c δ

a
d − δ a

c δ
b
d

)
f a
b[cd] = −f a

[cd]b = 1
2 (ηbcδ a

d − ηbdδ a
c )

f
[ef ]

[ab][cd] = 1
4

(
ηbcδ

e
a δ

f
d − ηacδ e

b δ
f
d + ηadδ

e
b δ

f
c − ηbdδ e

a δ
f
c

)
− e←→ f

(3)
where λ is a real parameter, and ηab = diag (1,−1,−1,−1) is the Minkowski
metric of the space-time. In fact, here we have a deformation of the de-Sitter
Lie algebra having λ as parameter. Considering the contraction λ → 0 we
obtain the Poincaré Lie algebra, i.e., the group DS contracts to the Poincaré
group.

Now we introduce the local DS gauge transformation and the correspond-
ing gauge covariant derivative ∇a, considering DS as an internal group of
symmetry. As usually in any gauge theory, we have

∇a = ∂a +Ba, (4)

together with the following decomposition of Ba with respect to the infinites-
imal generators Pa and Mab

Ba = −iB b
a Pb +

i

2
B bc
a Mbc. (5)

The corresponding generators of the DS group in the field space have the
expressions:

Pa = i∂a + λKa, Mab = i (xa∂b − xb∂a) +
1
2

Σab, (6)

where Ka are the “translation” de Sitter generators and Σab the spin angular
momentum operators. The last one (Σab) satisfy commutation relations of the
same form as Mab and Ka have the expression [2]:

Ka = i
(
2ηabxbxc − σ2δ c

a

)
∂c, σ2 = ηabx

axb. (7)

We can also decompose Ba with respect to ∂a and Σab as follows:

Ba =
[
B b
a + λB d

a

(
2ηdcxcxb − σ2δ b

d

)]
∂b +

i

4
B bc
a Σbc. (8)

Introducing (8) into Eq. (4) and denoting

e b
a = δ b

a + λB d
a

(
2ηdcxcxb − σ2δ b

d

)
+B bc

a xc, (9)
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we obtain
∇a = e b

a ∂b +
i

4
B bc
a Σbc. (10)

Because in our model the coordinate and DS gauge transformations are
strictly separated, we emphasize that the introduction of B b

a , B bc
a and e b

a

gauge fields has no implications on the structure of the underlying space-time,
which is assumed to be (M4, η) endowed with the Minkowski metric η.

Abbreviating

da = e b
a ∂b, Ba =

i

4
B bc
a Σbc, (11)

where Σab must be considered into the Lorentz group representation it acts
on, we can write the gauge covariant derivative (10) under the simple form:

∇a = da +Ba. (12)

The derivative da can be just considered as a translation gauge covariant
derivative [3]. In order to obtain the tensor (field strength operator) Fab of
the gauge fields, we introduce the non-covariant decomposition

[da, db] = H c
ab dc. (13)

The quantity H c
ab is expressed in terms of e b

a as:

H c
ab = e c

m

(
e d
a ∂de

m
b − e d

b ∂de
m
a

)
, (14)

where e c
m is the matrix inverse of e n

c , i.e. e c
m e n

c = δ n
m . Using the definition

of the field strength operator in a gauge theory, we have:

Fab = [∇a,∇b] = H c
ab dc − (B c

ab −B c
ba ) dc + daBb − dbBa + [Ba, Bb] . (15)

If we introduce the tensor

T c
ab = B c

ab −B c
ba −H c

ab , (16)

then we can rewrite Fab as

Fab = −T c
ab ∇c +

i

4
Rcd abΣcd, (17)

where Rcd ab has the expression

Rcd ab = daB
cd
b − dbB cd

a +B de
a B c

be −B de
b B c

ae −H e
ab B

dc
e . (18)

In what follows we will use the shorthand notation

Rab =
i

4
Rcd abΣcd. (19)
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As Fab in (17) has a decomposition with respect to ∇a and Σcd it acts
in general not only as a matrix but also as a first order differential operator
in field space. But, if we suppose that

H c
ab = B c

ab −B c
ba , (20)

that is we take T c
ab = 0, then we can write Eq. (15) under the form:

Fab =
i

4
Rcd abΣcd = Rab. (21)

We can verify that T c
ab and Rcd ab transform homogeneous under in-

finitesimal local DS gauge transformations. Then, as a consequence, the choice
T c
ab = 0 is indeed a gauge covariant statement as a implicitly assumed above.

3 REGULARIZATION

In order to analyze the regularization of our DS gauge theory, we will
consider first the globally DS invariant action for a Dirac spinor field (matter
field):

SD =
∫
d4x

[
i

2
ψγa (∂aψ)− i

2

(
∂aψ

)
γaψ −mψψ

]
. (22)

Then, if we want to obtain a gauge (local) invariant action, we have to
change the usual derivative ∂a in (22) by the gauge covariant derivative defined
in Eq. (12):

SD =
∫
d4x e−1

[
i

2
ψγa (∇aψ)− i

2

(
∇aψ

)
γaψ −mψψ

]
(23)

and to use the new volume element d4x e−1, where e−1 = det
(
e b
a

)
.Then,

partially integrating ∇a in the second term of (23), we obtain the usual form
of the Dirac action:

SD =
∫
d4x e−1ψ (iγa∇a −m)ψ, (24)

where we used the choice T c
ab = 0.

The assumption that the interaction of the DS gauge fields with the
matter fields (in our case with the Dirac field) can be regularized, imposes
strong conditions on the classical gauge field dynamics. Namely, we know that
the change of the partition function of the whole system under rescaling can be
absorbed in its classical action yielding at most a nontrivial scale dependence
of the different couplings, masses and wave function regularizations. As a
consequence, the change of one-loop matter partition under rescaling will allow
us to constrain the classical gauge field dynamics. The contribution of the
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Dirac field to the partition function is given by the following functional integral
[4]:

Zψ (e,B) =
∫
DψDψeiSD(ψ,ψ;e,B). (25)

Then, we may perform a formal Grassmann integral in (25) and obtain:

Zψ (e,B) = e
1
2

ln detMψ(e,B), (26)

where
Mψ (e,B) = −DaD

a +
i

2
RabΣab −m2. (27)

Here, Mψ (e,B) is named hyperbolic fluctuation operator and its expres-
sion in (27) is obtain as usually [4] by squaring the Dirac operator introduced
in Eq. (24). For the case T c

ab = 0 we consider here, the operator Da in Eq.
(27) is given by the formula:

Da = ∇a +Ba. (28)

The gauge field (Lie algebra valued) shall only act on the spinor indices
and the covariant derivative ∇a only on vector indices.

The spinor contribution to the partition function regularized at scale µ
is given then by [5]:

Zψ (µ; e,B) = e−
1
2
ζ′(0;µ;Mψ(e,B)), (29)

where ζ (s;µ;Mψ (e,B)) is the generalized zeta function of parameter s associ-
ated to the hyperbolic fluctuation operator Mψ (e,B) and ζ ′ (0;µ;Mψ (e,B))
is the derivative of the generalized zeta function with respect to s taken for
s = 0.

We consider now a new scale µ̃ = λµ and determine the corresponding
change of Zψ (µ; e,B). To end this, we use the very well known property [5]

ζ ′ (0; µ̃;Mψ (e,B)) = ζ ′ (0;µ;Mψ (e,B)) + 2 lnλ · ζ (0;µ;Mψ (e,B)) . (30)

Then, we obtain:

Zψ (µ̃; e,B) = Zψ (µ; e,B) e− lnλ·ζ(0;µ;Mψ(e,B)). (31)

In order to obtain zeta function ζ (0, µ,Mψ (e,B)) we start with heat
kernel equation (

∂

∂ (is)
+Mx

)
K (is;x, y) , (32)
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together with an asymptotically s-expansion for the heat kernel K (is;x, y) of
the form

K (is;x, y) ∝ i

4πisd/2
exp

(
−r

2 (x, y)
4is

) ∞∑
k=0

(is)k ck (x, y) . (33)

In eq. (32) the differential operator M acts on heat kernel K and the
index x denotes the derivative of heat kernel with respect to x.

We remember the fact that zeta function in four dimensions is given by

ζ (0;µ;Mψ (e,B)) =
i

(4π)2

∫
d4x det e−1trc2 (x) (34)

and the coefficient function c2 (x) for the Dirac field in the case T = 0 has the
form

trDc2 =
1
30
∇ c
c Rab ab +

1
72
R ab
ab ·R cd

cd (35)

− 7
360

Rabcd ·Rabcd −
1
45
R a
ac d ·R cbd

b +

+
1
3
m2 ·Rab ab + 2m4.

Using equations (34) and (35) we obtain the value of ζ (0, µ,Mψ (e,B))
as an integral over trDc2. Next, introducing the value of ζ (0, µ,Mψ (e,B))
in the partition function (31) allow us to obtain the anomalous terms in the
spinorial case and then to determine a minimal field gauge action compatible
with regularization requirements. Regularization of any theory, including dy-
namical gauge fields, requires that these contributions to the partition function
like (31) be expressed as local DS gauge invariant polynomials in the fields e b

a

and B bc
a . In our case, under the constraint T c

ab = 0, we obtain as minimal
classical action for the gauge fields:

Sgauge (e,B) = (36)

=
∫
d4x e−1

(
− 1

16πG
(R− 2Λ) + αR2 + βR a

ac dR
cbd
b + γRabcdR

abcd
)
.

Here, G is the gravitational constant and α, β, γ are the coupling con-
stants. We can see that the DS gauge group automatically enforces a cos-
mological constant which in our model is equal to Λ = −12λ2, where λ is
the deformation parameter of the de Sitter Lie algebra. We emphasize that
Sgauge in (36) is an action for gauge fields defined on the Minkowski space-time
(M4, η) and is invariant on one hand under local DS gauge transformations,
on the other hand under global Poincaré symmetry reflecting the symmetry
of the underlying space-time.
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4 CONCLUSION

Based on the hypothesis that DS is a purely inner symmetry we have
developed a gauge theory of gravitation with the constant cosmological au-
tomatically included. When the deformation parameter λ → 0, we obtain
the Poincaré gauge theory on the Minkowski space-time which do not include
the cosmological constant. The gravitational interaction is mediated by gauge
fields defined on a fixed Minkowski space-time. Their dynamics has been de-
termined imposing consistency requirements with regularization properties of
matter fields in the gravitational backgrounds. In our model there is no any di-
rect interrelation between gravity and the structure of spacetime. At quantum
level it may conceptually be easier to deal with a field theoretical description
of gravitation free of any geometrical aspects.
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