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Abstract. We develop a noncommutative theory of gravity by gauging the 
noncommutative SO(4,1) de-Sitter group and using the Seiberg-Witten map, with 
subsequent contraction to the Poincaré (inhomogeneous Lorentz) group ISO(3,1). The 
gauge fields are assumed to have spherical symmetry and the commutative torsion is 
constrained to vanish. The gauge fields (tetrads) are determined up to the second order in 
the noncommutative parameter. A deformed real metric is then defined and its 
components are obtained. As an application we calculate the noncommutative corrections 
to the Schwarzschild solution. The possibility to obtain such corrections for Reissner-
Nordström metric is also discussed. Some of the implications of the noncommutative 
Schwarzschild and Reissner-Nordström metrics in connection to their singularity 
structure and Black-Hole physics are also mentioned. 

 
1. Introduction  

 
It is well known that the noncommutativity of space-time is one of the presently 

option for describing the quantum properties of matter at very high energy scale.. If the 
nature has chosen such a course, it is most sensible to search for manifestations of the 
noncommutativity of space-time at the “natural laboratories” of the highest energy, i.e. 
the gravitational singularities. 

The noncommutativity of space-time is intrinsically connected with gravity [1, 2]. 
Gauge theories of gravitation have been intensively studied up to now, both on 
commutative [3-4] (see also the reviews in [5,6]) [7] and noncommutative [8, 9] space-
times. Many of recent researches are orientated toward a formulation of General 
Relativity on noncommutative space-times. In Ref. [8] for example, a deformation of 
Einstein’s gravity was studied by gauging the noncommutative SO(4,1) de-Sitter group 
and using the Seiberg-Witten map [2, 10, 11]  with subsequent contraction to the 
Poincaré (inhomogeneous Lorentz) group ISO(3,1). Another construction of 
noncommutative gravitational theory was proposed in Refs. [12], and it is based on the 
twisted Poincaré algebra [13]. The twisting procedure insures the Lorentz invariance of 
the algebra [ ] μννμ θ, ixx =  (canonical structure) defining the noncommutativity of the 
space-time. However, it has been shown that the dynamics of the noncommutative 
gravity coming from string theory [14] is much richer that one in this version of 
deformed gravity [1].  Ref. [15] contains results on noncommutative General Relativity 



for a restrictive class of coordinate transformations which preserve the canonical 
structure. By gauging the Lorentz algebra so(3,1) within the enveloping algebra approach 
one obtains a theory of noncommutative General Relativity restricted to the volume-
preserving transformations (unimodular theory of gravity). Another attempted approach 
was to twist  the gauge Poincaré algebra [16]. It is worthwhile to emphasize that there 
remains one more important unsolved problem in all these theories: to establish a Leibniz 
rule for gauge transformations of fields [17, 18], since the star product is not invariant 
under the diffeomorphism transformations. Steps towards this goal have been taken in a 
geometrical approach to noncommutative gravity [19].  

The investigation of noncommutative gauge theories of gravitation is also motivated 
by the possibility of their applications to the physics of quantum black holes [20,21]. It 
could provide a satisfactory description of black holes in those extreme regimes, where 
stringy effects are considered relevant [22, 23].  

It is known that the black hole characteristic quantities depend on the Hawking 
temperature via the usual thermodynamically relations. The Hawking temperature 
undergoes corrections from many sources: the quantum corrections [24], the self-
gravitational corrections [25], and the corrections due to the generalized  uncertainty 
principle [26]. But, it is possible to have also relevant corrections due to the space-time 
noncommutativity. We will give such corrections for the cases of  Schwarzschild and 
Reissner-Nordström black holes. 

In this paper we present a deformed Schwarzschild solution in noncommutative 
gauge theory of gravitation proceeding along the approach in Ref. [8]. Although this 
version of noncommutative version is certainly not a final one, we believe that the 
complete theory will retain the main features of this approach. Partly, the results referring 
to Schwarzschild solution are contained in our recent paper [28]. First, we develop a de-
Sitter gauge theory of gravitation over a spherical symmetric commutative Minkowski 
space-time [7]. Then, a deformation of the gravitational field is constructed by gauging 
the noncommutative de-Sitter SO(4,1) group [8] and using Seiberg-Witten map [2]. The 
space-time of noncommutative theory will be also of Minkowski type but it will be 
endowed with spherical noncommutative coordinates. The deformed gauge fields are 
determined up to the second order in the noncommutativity parameters μνθ .  

Finally, the deformed gravitational gauge potentials (tetrad fields) ( )θ,êμ xa  are 
obtained by contraction of the noncommutative gauge group SO(4,1) to the Poincaré 
(inhomogeneous Lorentz) group ISO(3,1). As an application, we calculate these 
potentials for the case of a Schwarzschild solution and define the corresponding 
deformed metric ( )θ,ˆμν xg . It is for the first time when such a deformed metric is given 
for a 4-dimensional noncommutative space-time. The corrections appear only in the 
second order of the expansion in θ , i.e. there are no any first order ones. We will give 
also an evaluation of the noncommutativity corrections to the red shift test of General 
Relativity. The conclusion is that the value of this correction is with about 18 orders less 
than that resulting from General Relativity in the case of Sun. Therefore, it is presently 
impossible to verify experimentally the noncommutativity correction to the red shift test 
of General Relativity. 



The calculations are very laborious, so that we used an analytical program conceived 
in GRTensor II package for the Maple platform. Specific routines have been written and 
adapted for Maple system. 

Section 2 is devoted to the commutative gauge theory of the de-Sitter group SO(4,1) 
formulated on a 4-dimensional Minkowski space-time endowed with s spherical metric. 
The Section 3 contains the results regarding the noncommutative theory. The deformed 
gauge potentials (tetrad fields) are obtained up to the second order of the expansion in θ . 
Based on these results, we define a deformed real metric and calculate its components in 
the case of a Schwarzschild solution. Using the results we determine in Section 4 the 
deformed Schwarzschild metric. The corrections are obtained up to the second order of 
the noncommutativity parameters νμθ . An evaluation of the value for the correction to 
the red shift test of General Relativity is also given. In section 5 we present preliminary 
results on the noncommutativity corrections for the case of the Reissner-Nordström 
metric. The possibility of obtain corrections for the thermodynamical quantities like the 
horizon radius, the Hawking temperature and the entropy of a black hole is also 
investigated. Some concluding remarks are given in Section 6. 

 
2. Commutative gauge theory 

 
We review first the gauge theory of the de-Sitter group SO(4,1) on a commutative 4-

dimensional Minkowski space-time endowed with the spherical symmetric metric [7]: 
  ( ) 22222222 dθsinθ tdcdrdrds −++= ϕ .    (2.1) 

This means that coordinates on this space-time are chosen as 
( ) ( ) 1,2,3,0μ,,θ,,μ == tcrx ϕ . The SO(4,1) group is 10-dimensional and its infinitesimal 
generators are denoted by 5,0,3,2,1,, =−= BAMM BAAB . If we introduce 
indices 0,3,2,1,, =⋅⋅⋅ba , i.e. we put 5,aA = , 5,bB = , etc., then the generators ABM  can 
be identified with translations 5aa MP =  and Lorentz rotations baab MM −= . The 
corresponding non-deformed  gauge potentials will be denoted by ( ) ( )xx BA

μ
AB
μ ωω −= . 

They are identified with ( ) ( )xx abba
μμ ωω −=  (spin connection) and ( ) ( )xekx aa

μ
5

μ =ω  (tetrad 
fields), where k is the contraction parameter. For the limit 0→k  we obtain the ISO(3,1) 
gauge group, i.e., the commutative Poincaré gauge theory of gravitation. The strength 
field associated to ( )xAB

μω  is [7]: 

 ( ) CDμμμμμ ηDBACDBACABABABF ωωωωωω νννν −+∂−∂= ,    (2.2) 
where ( )1,1,1,1,1η −= diagAB . Then, we have: 
  ( )[ ]bcμμμμμ

5
μ ηωω cab

ν
c
ν

aba
ν

a
ν

a
ν

a
ν eeeekTkF −+∂−∂=≡ ,  (2.3)  

  
( )

( ),
η

μννμ

cdμ
c

νν
ac
μμννμμνμν

baba

dbadbabababab

eeeek

RF

−

+−+∂−∂=≡ ωωωωωω
  (2.4) 

where ( )1,1,1,1η −= diagab . The Poincare gauge theory that we are using has the geometric 
structure of the Riemann-Cartan space-time U(4) with curvature and torsion [6]. The 
quantity aT νμ  is interpreted as the torsion tensor and ab

μνR  as the curvature tensor of a 



Riemann-Cartan space-time defined by the gravitational fields ( )xea
μ  and ( )xab

μω . By 

imposing the condition of null torsion 0μ =aT ν , one can solve for ( )xab
μω  in terms of 

( )xea
μ , i.e. the spin connection components are determined by tetrads (they are not 

independent fields). 
 Now, we consider a particular form of spherically gauge fields of the SO(4,1) 
group given by the following ansatz [7]: 

  ( ),0,0,,0,0,0,0,1 2
μ

1
μ re

A
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⎜
⎝
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μ re =  , ( ),,0,0,00
μ Ae =  (2.5) 

  
( ) ( ) ( )
( ) ( ),0,0,0,0,,0,0,0

,Vθ,cos,0,0,θ,0sinZ0,0,,0,0,,0
30
μ

20
μ

10
μ

23
μ

13
μ

12
μ

===

−===

ωωω

ωωω

U

W
  (2.6) 

where WVUA ,,,  and Z  are functions only of the three-dimensional radius (r). The non-
null components of aT νμ  and abR νμ  are [4]: 
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and respectively 
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   (2.8) 

where WVUA ′′′′ ,,, and Z ′  denote the derivatives with respect to the r-coordinate. 
 If we use (2.7), then the condition of null-torsion gives the following constraints: 
  AZWVAAU −===′−= ,0, ,     (2.9) 
as we already have mentioned. Then, from the field equations for ( )xea

μ  

  ,0
2
1

μμ =− aa eRR νμ
μ

ν
μμ , ba

ab
νb

ab
ν

a eeRReRR == ,   (2.10) 

μ
ae  being the inverse of aeμ , we obtain the solution [7] 

  ,
r
α12 −=A         (2.11) 

where α  is an arbitrary constant of integration. For 2
2α

c
GM

=  we obtain the 

commutative Schwarzschild solution (G is the Newton constant and M is the mass of the 
point-like source of the gravitational field). The corresponding metric 
  ,η μabμ

b
ν

a eeg =ν        (2.12) 
has the following non-null components 
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1 .  (2.13) 

We emphasize that this solution is obtained from the commutative SO(4,1) gauge theory 
with a contraction 0→k  to the Poincaré group ISO(3,1). 
 We will follow now the Ref, [8] in order to obtain a deformation of gravitation by 
gauging the noncommutative de-Sitter SO(4,1) group. Then, by contraction to the 
Poincaré (inhomogeneous Lorentz) group ISO(3,1) we will obtain the deformed gauge 
fields ( )θ,ˆμ xea . In the next three Sections we will calculate these fields for the case of a 
Schwarzschild and Reissner-Nordström solutions and define the corresponding deformed 
metrics ( )θ,ˆμ xg ν  up to the second order of the expansion in θ .  
 
   3. Deformed gauge fields 
 

We suppose that the noncommutative structure of the space-time is determined by 
   [ ] νν μμ θ, ixx = ,      (3.1) 
where μμ θθ νν −= are constant (canonical) parameters. To develop the noncommutative 
gauge theory we introduce the star “*” product between the functions f and g defined 
over this space-time: 

  ( )( ) ( ) ( )xgexfxgf
i

ν
ν ∂⊗∂

=∗
rs

μ
μθ

2 .     (3.2) 
 The gauge fields for the noncommutative case are denoted by ( )θ,ˆμ xABω ,and they 
are subjected to the reality constraints [ 8, 10, 11]: 

  
( ) ( )
( ) ( ) ( ).θ,ˆθ,ˆθ,ˆ

,θ,ˆθ,ˆ

μμμ

μμ

xxx

xx
BAABrAB

BAAB

ωωω

ωω

−=−≡

−=
+

    (3.3) 

with “+” denoting the complex conjugate 
By expanding ( )θ,ˆμ xabω in powers of noncommutative parameter θ : 

 ( ) ( ) ( ) ( ) ,θθθθ,ˆ τλρμ
τλρ

ρμ
ρ

μμ ⋅⋅⋅++−= xxixx ABABABAB
ν

ν
ν

ν ωωωω    (3.4) 
then the constraints (3.1) imply the properties 
 ( ) ( ) ( ) ( ) ( ) ( ) ⋅⋅⋅⋅−==−= ,,, τλρμτλρμρμρμμμ xxxxxx BAABBAABBAAB

νννν ωωωωωω   (3.5) 
 Using the Seiberg-Witten map [2] one obtains the following noncommutative 
corrections up to the second order [8]: 

 ( ) { }ABRx μρμρν
AB
ρμν ,

4
1

+∂= ωωω ,      (3.6) 

 ( ) { }{ } { }{ }( −++∂∂−= ρμντλμρμρντλ
AB

τλρμν ,,2,,
32
1 RRRx ωωωωω  

   
{ }{ } { } ( ){ }

( )[ ])ABR
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μτμτρλν

μτμτλρλρνμτρμτρλ

,2

,,,,

+∂∂∂+

++∂+∂−∂+−

ωω

ωωωωω ν
     (3.7) 

where 



 { } B
C

ACB
C

ACAB αββαβα, += , [ ] B
C

ACB
C

ACAB αββαβα, −= .  (3.8) 
and  
 ( ) DCσρ

CB
μσρ

CA
μσρμσρμ ηADBDABAB RRRRD ωω ++∂= .    (3.9) 

As in the commutative case, we write ( ) ( )θ,ˆθ,ˆ μ
5

μ xekx aa =ω  and ( ) ( )θ,θ,ˆ μ
55
μ xkx φω = . 

Then, we impose the condition of null torsion 0μν =
aT  and not 0μ̂ν =

aT  because by 
contraction 0→k  the quantity ( )θ,μ xφ  will drop out [8]. Using (3.6) and (3.7) we 

obtain, in the limit 0→k , the deformed tetrad fields ( )θ,ˆμ xea  up to the second order: 

 ( ) ( ) ( ) ( ) ( )3
μνρλτ

λτνρ
μνρ

νρ
μμ θeθθθθ,ˆ Oxxeixexe aaaa +++= ,   (3.10) 

where 

 ( )[ ] dc
dcacadcaa eRee η

4
1

νμρμρμρνρνμ +∂+∂−= ωω ,     (3.11) 

 { } ( )[ −∂+−= md
mdcdcbacbaa eRRDeRRe η,2

32
1

νμτρμτρλλρμνττλρνμ ω  

          ( ){ } ( ){ } −+∂∂−∂+− cbacba eReRRD λμρμρντλμτρμτρν ,, ωωω         (3.12) 

          ( )( ) ++∂+∂∂− dm
mdcdcmdcba eRe ηνμρμρμρντλ ωωω −∂∂∂ cba eμτρλν2 ω  

          ( ) cbaba eR λνμτμτρ2 ∂+∂∂− ω ( ){ } −∂+∂− cba eR μτλρλρν , ωω  

          ( ) ( )( )] cbmd
mdcdcmdcbaba eReR ηηνλρλρλρνμτμτ +∂+∂+∂− ωωω . 

We define also the complex conjugate of the deformed tetrad fields ( )θ,ˆμ xea  given in 
(3.10) by: 

( ) ( ) ( ) ( ) ( )3
μνρλτ

λτνρ
μνρ

νρ
μμ θeθθθθ,ˆ Oxxeixexe aaaa ++−=

+
.  (3.13) 

Then, we can introduce a deformed metric by formula: 

  ( ) .ˆˆˆˆη
2
1θ,ĝ νμνμνμ ⎟

⎠
⎞⎜

⎝
⎛ ∗+∗=

++ abba
ba eeeex     (3.14) 

We can see that this metric is, by definition, a real one, even if the deformed tetrad fields 
( )θ,ˆμ xea  are complex quantities.  

 
4. Second order corrections to Schwarzschild solution 

 
Using the ansatz (2.5) – (2.6), we can determine the deformed Schwarzschild metric. 

To end this, we have to obtain first the corresponding components of the tetrad fields 

( )θ,ˆμ xea  and their complex conjugated ( )θ,ˆμ xea+   given by the Eqs. (3.10) and (3.13). 
With the definition (3.14) it is possible then to obtain the components of the deformed 
metric ( )θ,ĝ νμ x .  

To simplify the calculations, we choose the parameters νμθ  as: 



  0,3,2,1νμ,,

0000
0000
000θ-
00θ0

θ νμ =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= .    (4.1) 

Here the constant quantity θ , which determine noncommutativity of the space-time 
coordinates, is chosen so that it has the dimension 2L  (square of length). 
 The non-null components of tetrad fields ( )θ,ˆμ xea  are: 

  ( )321
1 θθ

8
1ˆ OA
A

e +
′′

+= ,       (4.2a) 

 ( ) ( )31
2 θθ2

4
ˆ OArAie +′+−= ,      (4.2b) 

 ( ) ( )3222
2 θθ12127

32
1ˆ OAArArAAre +′′+′+′+= ,    (4.2c) 

 ( ) ( ) ( )3223
3 θθθsin22

8
1θθcos

4
i-θsinˆ O

A
AAAAArArre +⎟
⎠
⎞

⎜
⎝
⎛ ′

−′+′′+′+= ,(4.2d) 

 ( ) ( )3222230
0 θθ252

8
1ˆ OAAAAAArAAArArAe +′′+′+′′′+′′′+′+= .       (4.2e) 

where AAA ′′′′′′ ,,  are respectively first, second and third derivatives of A(r). The complex 
conjugated components can be easily obtained from these expressions. 
 Then, using the definition (3.14), we obtain the following non-null components of 
the deformed metric up to the second order: 

( ) ( ),θθ
4
11θ,ˆ 42

211 O
A
A

A
xg +

′′
+=        (4.3) 

( ) ( ) ( ),θθ121611
16
1θ,ˆ 4222222

22 OAArArAArArxg +′′+′+′++=

( ) ( )422222222
33 θθθcosθsin224

16
1θsinθ,ˆ OArAAr

A
ArAArrxg +⎥

⎦

⎤
⎢
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⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ′+′′+

′
−′+=

 

( ) ( ) ( ),θθ522
4
1θ,ˆ 422223332

00 OAAArAAAAAArAArAxg +′′′+′+′′+′′′+′−−=  

For 0θ→  we obtain the commutative Schwarzschild solution with 
r

A α12 −=  [see Eq. 

(2.11)]. 
It is interesting to remark that, if we choose the parameters νμθ  as in (4.1), then the 

deformed metric ( )θ,ĝ νμ x  is diagonal as it is in the commutative case. But, in general, 

for arbitrary νμθ , the deformed metric ( )θ,ĝ νμ x  is not diagonal even if the commutative 
(non-deformed) one has this property. Therefore, we can conclude that the 
noncommutativity modifies the structure of the gravitational field. 

For the Schwarzschild solution we have: 



  ( ) 2
2α,α1

c
MG

r
rA =−= ;      (4.4) 

The function A(r) is non-dimensional, but its derivatives A′ , A ′′  and A ′′′  have 
respectively the dimensions 1−L 2−L  and 3−L . As a consequence, all the components of 
the deformed metric ( )θ,ĝ νμ x  in (4.3) have the correct dimensions. 
 Now, if we introduce (4.4) in (4.3), then we obtain the deformed Schwarzschild 
metric. Its non-null components are: 

  ( )
( )

)θ(θ
α-r16
α3-r4α

α1

1ˆ 42
2211 O

r
r

g +−
−

= , 

  ( ) )θ(θ
α-r32

α17rα17r2ˆ 42
22

2
22 O

r
rg +

+−
+= ,    (4.5) 

  ( ) ( )
( ) )θ(θ

α-r16
α-r2α-θcosα-rαrθsinˆ 42

222
22

33 O
r

rg +
+

+= , 

  ( ) )θ(θ
16

α11-r8αα1ˆ 42
400 O

rr
g +−⎟

⎠
⎞

⎜
⎝
⎛ −−= . 

We can evaluate then the contributions of these corrections to the tests of General 
Relativity. For example, if we consider the red shift of the light propagating in a 
gravitational field [27], then we obtain for the case of the Sun: 

  ( ) ( )42
4 θθ

R32
α11-R8α

R2
α

λ
λ O+−=

Δ ,     (4.6) 

where R is the radius of the Sun. Because for the Sun we have m
c

MG 3
2 1095.22α ⋅==  

and mR 810955.6 ⋅= , then we obtain from (4.5): 

  ( )42426 θθ1019.2102
λ
λ O+⋅−⋅=

Δ −− .    (4.7) 

The noncommutativity correction has a value that is with about 18 orders less than that 
which result from General Relativity. Therefore, presently it is not possible to verify 
experimentally the noncommutativity correction to the red shift test of General Relativity. 
 

5. Corrections to the Reissner-Nordström solution 
 

The results from previous Sections apply to any spherically gravitational fields 
having the gauge fields defined as in Eqs. (2.5) and (2.6). In particular, they can be used 
also for the Reissner-Nordström metric, with the function A(r) given by: 

   ( ) 2

221
r
Q

r
mrA +−= ,      (5.1) 

where m is the mass and Q the electric charge of the point-like source of gravitational 
field. It is very easy to verify that from Eqs. (4.3) we obtain for 0θ→ , the commutative 
Reissner-Nordström solution if we consider the expression (5.1). 



 Now, if we insert A(r) from (5.1) into Eqs. (4.3), then we obtain the deformed 
Reissner-Nordström metric. Its non-null components are: 

( ) ( )
( ) ,
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θ26332
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26222223

2
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r
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2
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⎛
+−−= .   (5.5) 

 
It will be very interesting to study the gravitational singularities of the deformed scalar 
curvature using these results. The work on this subject is in progress [29].  
 The expression (5.5) can be used to obtain the corrections to the thermodynamical 
quantities due to the space-time noncommutativity. If we consider the corrected event 
horizon radius up to the second order in θ  as 
  2θCθˆ ++= BAr ,       (5.6) 
then we can obtain the unknown coefficients A, B, C  by imposing the condition  
  ( ) 0θ,ˆˆ 00 =rg .        (5.7) 
Substituting (5.6) into (5.7) and using the expression (5.5), we obtain the following 
expression for the event horizon radius: 
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1648432323216

4088644848
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mQQmQQmmQmm
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  (5.8)  

 The modified Hawking-Bekenstein temperature and the horizon area of Reissner-
Nordström black hole in noncommutative space-time to the second order of θ  are as 
following respectively: 
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 According to the Hawking-Bekenstein formula , the thermodynamic entropy of a 

black hole is proportional to the area of the event horizon 
4
AS = , where A is the area of 

the horizon. The corrected entropy due to noncommutativity of space-time is: 
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If we consider the Q = 0 case, then we obtain the corresponding quantities for 
Schwarzschild black holes. 
 

6. Concluding remarks 
 

Using the Seiberg-Witten map we determined the noncommutativity corrections to 
the Schwarzschild solution up to the second order in the parameters νμθ . Following the 
Ref. [7], we reviewed first the de-Sitter gauge theory of gravitation over a spherical 
symmetric commutative Minkowski space-time. Then, a deformation of the gravitational 
field has been constructed along the Ref. [8] by gauging the noncommutative de-Sitter 
SO(4,1) group and using Seiberg-Witten map. The corresponding space-time is also of 
Minkowski type but endowed now with spherical noncommutative coordinates. We 
determined the deformed gauge fields up to the second order in the noncommutativity 
parameters μνθ . The deformed gravitational gauge potentials (tetrad fields) ( )θ,êμ xa  have 
been obtained by contraction of the noncommutative gauge group SO(4,1) to the 
Poincaré (inhomogeneous Lorentz) group ISO(3,1). As an application, we calculated 
these potentials for the case of the Schwarzschild solution and defined the corresponding 
deformed metric ( )θ,ˆμν xg . The corrections appear only in the second order of the 
expansion inθ , i.e. there are no first order correction terms. For the calculations we used 
an analytical program conceived for the GRTensor II package of the Maple platform. 



We have considered also the red shift test in the noncommutative theory and 

determined the value of the relative displacement 
λ
λΔ  for the case of Sun. The result 

shows that the correction is too small to have observable effects. 
Having found the deformed solutions for a noncommutativity theory of gravy we 

have been breaking new ground towards approaching the black hole physics on non-
commutative space-time [29]. 

The corrections for the event horizon radius, Hawking temperature and the entropy of 
the black hole have been evaluated. It is important to emphasize that in the case of  
Reissner-Nordström black hole we considered the commutative (non-deformed) 
electromagnetic field as a first step to obtain the solution. It remains, as an open question, 
to give a method to introduce into the model a deformed electromagnetic field. 
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