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Abstract. We develop a noncommutative theory of gravity by gauging the
noncommutative SO(4,1) de-Sitter group and using the Seiberg-Witten map, with
subsequent contraction to the Poincaré (inhomogeneous Lorentz) group ISO(3,1). The
gauge fields are assumed to have spherical symmetry and the commutative torsion is
constrained to vanish. The gauge fields (tetrads) are determined up to the second order in
the noncommutative parameter. A deformed real metric is then defined and its
components are obtained. As an application we calculate the noncommutative corrections
to the Schwarzschild solution. The possibility to obtain such corrections for Reissner-
Nordstrom metric is also discussed. Some of the implications of the noncommutative
Schwarzschild and Reissner-Nordstrom metrics in connection to their singularity
structure and Black-Hole physics are also mentioned.

1. Introduction

It is well known that the noncommutativity of space-time is one of the presently
option for describing the quantum properties of matter at very high energy scale.. If the
nature has chosen such a course, it is most sensible to search for manifestations of the
noncommutativity of space-time at the “natural laboratories” of the highest energy, i.e.
the gravitational singularities.

The noncommutativity of space-time is intrinsically connected with gravity [1, 2].
Gauge theories of gravitation have been intensively studied up to now, both on
commutative [3-4] (see also the reviews in [5,6]) [7] and noncommutative [8, 9] space-
times. Many of recent researches are orientated toward a formulation of General
Relativity on noncommutative space-times. In Ref. [8] for example, a deformation of
Einstein’s gravity was studied by gauging the noncommutative SO(4,1) de-Sitter group
and using the Seiberg-Witten map [2, 10, 11] with subsequent contraction to the
Poincar¢ (inhomogeneous Lorentz) group ISO(3,1). Another construction of
noncommutative gravitational theory was proposed in Refs. [12], and it is based on the
twisted Poincaré algebra [13]. The twisting procedure insures the Lorentz invariance of

the algebra lx“,xvjzi 0" (canonical structure) defining the noncommutativity of the

space-time. However, it has been shown that the dynamics of the noncommutative
gravity coming from string theory [14] is much richer that one in this version of
deformed gravity [1]. Ref. [15] contains results on noncommutative General Relativity



for a restrictive class of coordinate transformations which preserve the canonical
structure. By gauging the Lorentz algebra so(3,7) within the enveloping algebra approach
one obtains a theory of noncommutative General Relativity restricted to the volume-
preserving transformations (unimodular theory of gravity). Another attempted approach
was to twist the gauge Poincaré algebra [16]. It is worthwhile to emphasize that there
remains one more important unsolved problem in all these theories: to establish a Leibniz
rule for gauge transformations of fields [17, 18], since the star product is not invariant
under the diffeomorphism transformations. Steps towards this goal have been taken in a
geometrical approach to noncommutative gravity [19].

The investigation of noncommutative gauge theories of gravitation is also motivated
by the possibility of their applications to the physics of quantum black holes [20,21]. It
could provide a satisfactory description of black holes in those extreme regimes, where
stringy effects are considered relevant [22, 23].

It is known that the black hole characteristic quantities depend on the Hawking
temperature via the usual thermodynamically relations. The Hawking temperature
undergoes corrections from many sources: the quantum corrections [24], the self-
gravitational corrections [25], and the corrections due to the generalized uncertainty
principle [26]. But, it is possible to have also relevant corrections due to the space-time
noncommutativity. We will give such corrections for the cases of Schwarzschild and
Reissner-Nordstrom black holes.

In this paper we present a deformed Schwarzschild solution in noncommutative
gauge theory of gravitation proceeding along the approach in Ref. [8]. Although this
version of noncommutative version is certainly not a final one, we believe that the
complete theory will retain the main features of this approach. Partly, the results referring
to Schwarzschild solution are contained in our recent paper [28]. First, we develop a de-
Sitter gauge theory of gravitation over a spherical symmetric commutative Minkowski
space-time [7]. Then, a deformation of the gravitational field is constructed by gauging
the noncommutative de-Sitter SO(4,1) group [8] and using Seiberg-Witten map [2]. The
space-time of noncommutative theory will be also of Minkowski type but it will be
endowed with spherical noncommutative coordinates. The deformed gauge fields are

determined up to the second order in the noncommutativity parameters 6"
Finally, the deformed gravitational gauge potentials (tetrad fields) éﬁ(x,@) are

obtained by contraction of the noncommutative gauge group SO(4,1) to the Poincaré
(inhomogeneous Lorentz) group ISO(3,1). As an application, we calculate these
potentials for the case of a Schwarzschild solution and define the corresponding
deformed metric g, (x,0). It is for the first time when such a deformed metric is given

for a 4-dimensional noncommutative space-time. The corrections appear only in the
second order of the expansion in 0, i.e. there are no any first order ones. We will give
also an evaluation of the noncommutativity corrections to the red shift test of General
Relativity. The conclusion is that the value of this correction is with about 18 orders less
than that resulting from General Relativity in the case of Sun. Therefore, it is presently
impossible to verify experimentally the noncommutativity correction to the red shift test
of General Relativity.



The calculations are very laborious, so that we used an analytical program conceived
in GRTensor II package for the Maple platform. Specific routines have been written and
adapted for Maple system.

Section 2 is devoted to the commutative gauge theory of the de-Sitter group SO(4,1)
formulated on a 4-dimensional Minkowski space-time endowed with s spherical metric.
The Section 3 contains the results regarding the noncommutative theory. The deformed
gauge potentials (tetrad fields) are obtained up to the second order of the expansion in 0.
Based on these results, we define a deformed real metric and calculate its components in
the case of a Schwarzschild solution. Using the results we determine in Section 4 the
deformed Schwarzschild metric. The corrections are obtained up to the second order of
the noncommutativity parameters 6"'. An evaluation of the value for the correction to
the red shift test of General Relativity is also given. In section 5 we present preliminary
results on the noncommutativity corrections for the case of the Reissner-Nordstrom
metric. The possibility of obtain corrections for the thermodynamical quantities like the
horizon radius, the Hawking temperature and the entropy of a black hole is also
investigated. Some concluding remarks are given in Section 6.

2. Commutative gauge theory

We review first the gauge theory of the de-Sitter group SO(4,1) on a commutative 4-
dimensional Minkowski space-time endowed with the spherical symmetric metric [7]:

ds” = dr? +r2(d0* +sin0dg? )- > d . 2.1)
This means that coordinates on this space-time are chosen as
(x“): (r,e,go,ct),u =1,2,3,0. The SO(4,1) group is 10-dimensional and its infinitesimal
generators are denoted by M, ,=-M, ,4,B=123,05. If we introduce
indicesa,b,--=1,2,3,0, i.e. we put 4=a,5, B=D>,5, etc., then the generators M ,, can
be identified with translations P, =M, and Lorentz rotations M, =-M, . The

corresponding non-deformed gauge potentials will be denoted by ®*(x)=-a""(x).

They are identified with @ b(x) = —a)f “(x) (spin connection) and a)j5 (x) =ke, (x) (tetrad
fields), where £ is the contraction parameter. For the limit £ — 0 we obtain the ISO(3,1)
gauge group, i.e., the commutative Poincaré gauge theory of gravitation. The strength
field associated to @ (x) is [7]:

F=0,0" -0,0" + (wfc o, -] 0" )nCD , (2.2)
where n ,, = diag(l,l,l,— 1,1). Then, we have:
a a a a ab ¢ ab ¢
Fw5 = kTw = k[@uev —6veM +(w“ e, —0, e, )nbc], (2.3)

Fu‘ib = R;’f = aua)gb — ava);’b + (a)ﬁca)fb - a)fca)ffb o+ 24)
k(effei7 —eieﬁ) .
where 0, = diag(l,l,l,—l). The Poincare gauge theory that we are using has the geometric

structure of the Riemann-Cartan space-time U(4) with curvature and torsion [6]. The
quantity 7. 1is interpreted as the torsion tensor and R:jt; as the curvature tensor of a



Riemann-Cartan space-time defined by the gravitational fields e (x) and a);fb (x). By
imposing the condition of null torsion 7, =0, one can solve for a)l‘fb (x) in terms of

e, (x), i.e. the spin connection components are determined by tetrads (they are not

independent fields).
Now, we consider a particular form of spherically gauge fields of the SO(4,1)
group given by the following ansatz [7]:

e, = &,o,o,oj, es =(0,7,0,0), e} =(0,0,7sin6,0) , e} =(0,0,0,4), (2.5)

C():Lz = (05 W,0,0)a a)plf = (OaO,ZSin 9,0), 6()53 = (O’O’_COS e’V)’
0" = (000.0).0" = 0" = (0.0.0.0),

where A,U,V,W and Z are functions only of the three-dimensional radius (r). The non-

(2.6)

null components of 7/, and R;”j are [4]:

o= A4 2 pgine, 12 =AW
’ (4+Z)sin® ! 7)
+Z)sin
Ty ==rV, Ty ="—"—,
A
and respectively

R)l =U', Ry, ==V', Ry =(Z —W)cos,
R =-UW,Ry =-VW, R} =-U Zsin0,

P " N 2.8)

Ry =V Zsin®,R); =W', R} =(1—ZW)sin®,
R); =Z'sin0,
where A"\ U",V',W'and Z' denote the derivatives with respect to the r-coordinate.

If we use (2.7), then the condition of null-torsion gives the following constraints:
U=-A4AA4,V=0,W=Z=-4, (2.9)

as we already have mentioned. Then, from the field equations for e; (x)

a 1 a a ab — ab —u —
Ry - Re =0,R{ =R’ e, ,R=Rl e!e,, (2.10)
e, being the inverse of e/, we obtain the solution [7]
A2=1-2 @.11)
r

we obtain the

where o is an arbitrary constant of integration. For o=-—;

c
commutative Schwarzschild solution (G is the Newton constant and M is the mass of the
point-like source of the gravitational field). The corresponding metric

g =M e ey, (2.12)
has the following non-null components



1 g3 2GM
= = =7, =—1- . 2.13
811 1_2GM %) sin 6 goo { j ( )

Czl"

We emphasize that this solution is obtained from the commutative SO(4,1) gauge theory
with a contraction £ — 0 to the Poincaré group ISO(3,1).

We will follow now the Ref, [8] in order to obtain a deformation of gravitation by
gauging the noncommutative de-Sitter SO(4,1) group. Then, by contraction to the
Poincaré (inhomogeneous Lorentz) group ISO(3,1) we will obtain the deformed gauge

fields éfl (x, 9). In the next three Sections we will calculate these fields for the case of a

Schwarzschild and Reissner-Nordstrom solutions and define the corresponding deformed
metrics gw(x, 9) up to the second order of the expansion in 0.

3. Deformed gauge fields

We suppose that the noncommutative structure of the space-time is determined by
|t x |=i0m, (3.1)
where 0" =—0""are constant (canonical) parameters. To develop the noncommutative

gauge theory we introduce the star “*” product between the functions f/ and g defined
over this space-time:

(f * g)(x): f(x)e g(x). (3.2)

The gauge fields for the noncommutative case are denoted by @;” (x,0),and they

éewé,,@)é‘,

are subjected to the reality constraints [ 8, 10, 11]:

anB+ (x,0)= —anA (x,0),

(3.3)
@ (x,0)" =" (x,-0)= -0 (x,0)
with “+” denoting the complex conjugate
By expanding aA);’b (x,e)in powers of noncommutative parameter 0 :
a." (x,0)= a)fB (x)-i0" o, (x)+06"°0" a)ffph(x)+ . (3.4)
then the constraints (3.1) imply the properties
" (x)= -0/ (x). o1}, (x) = 0], (x). 0.7, (x) = -0, (). - (3.5)

Using the Seiberg-Witten map [2] one obtains the following noncommutative
corrections up to the second order [8]:

0B (x):% (,,0,0, +R ", (3.6)

a)ﬁ’,h(x) = 3% (— {a)x,é’T {a)v,é’pa)u +R,, }}+ 2{@\, {RTV Ry }}—
- {wk’{a)l/’Dpr +apr}}_ {{G)V’Gpwk +Rp7~}’(ara)u +Rw )}+
(3.7
+2[6,0,,0,(0.0, + R, )])"

where



@B =B+ ac”, [l =B -pac” (38)
and
DR =0,R +(0° R2” + 0P R” Inep - (3.9)
As in the commutative case, we write 0355 (x,0)= ke, (x,0) and (?)55 (x,0)=k 4, (x,0).
Then, we impose the condition of null torsion 7,5, =0 and not f’u‘i =0 because by

contraction k — 0 the quantity ¢H(x,9) will drop out [8]. Using (3.6) and (3.7) we

obtain, in the limit £ — 0, the deformed tetrad fields ¢, (x,0) up to the second order:

&4(x,0)= e (x)+1 0" e (x)+0% 0™ ¢, (x)+0(0°), (3.10)
where
€y :—%[a)gcapej +(8pa)flc +R§:)ef]ncd, (3.11)
civpne =33 PR Ry ¢ = (D, REY 0, REY el -
—lo,.(DR, +0,R, )" & —0f0,.0,0,+R )P el —  (3.12)

—0 0wt 0,6 + (0, ! + RE)el Iy + 20,00%8,0, € —
~20,(0, 0% + R )0, & —{,.(0,0, + R , )"0, € -
(0.0 + R )i 8 € +(0, 0t + R Jer g [

u(x,e) given in

We define also the complex conjugate of the deformed tetrad fields e
(3.10) by:

60" (x,0) = e (x)=1 0" ¢, (x)+ 0% 0™ e (x)+0(0°). (3.13)
Then, we can introduce a deformed metric by formula:

R 1 nd . A Ah A
o (10) =y (87 w2 e el ) (3.14)

We can see that this metric is, by definition, a real one, even if the deformed tetrad fields
en (x,e) are complex quantities.

4. Second order corrections to Schwarzschild solution

Using the ansatz (2.5) — (2.6), we can determine the deformed Schwarzschild metric.
To end this, we have to obtain first the corresponding components of the tetrad fields

ey (x,G) and their complex conjugated éf(x,ﬂ) given by the Egs. (3.10) and (3.13).

With the definition (3.14) it is possible then to obtain the components of the deformed
metric gw(x,e).

To simplify the calculations, we choose the parameters 6"" as:



onY =

0
-0
. . wv=1230. 4.1)

S O D
oS O O
S O O

0 0 0 O
Here the constant quantity 6, which determine noncommutativity of the space-time
coordinates, is chosen so that it has the dimension L (square of length).
The non-null components of tetrad fields é; (x,0) are:

& =%+?92 +0(0?). (4.2a)
&l = —i(A+2rA') 0+0[0°), (4.2b)
A 1 ' 12 ALY 3

&2 —r+§(7AA +12r 47 +127 44")07 +0(0°), (4.2¢)

!

&3 = rsin® -%(0050)6 +%(2M'2 FrAA 1244 —qu (sin0)02 + 0(0° ).(4.2d)

& = A+é(2rA’3 FSPAA A +r A A" 42447 + 42 42 +00).  (4.2¢)

where A4, 4", A" are respectively first, second and third derivatives of A(r). The complex

conjugated components can be easily obtained from these expressions.
Then, using the definition (3.14), we obtain the following non-null components of
the deformed metric up to the second order:
1 l "

éll(x,9)=?+1792 +0(94), (43)
82 (1,0) =2 +%(A2 FULr A4 +1672 4™ 41277447007 +0(0* )

!

235(x,0)=r2sin20 +%[4(2rAA’—rAj+r2 AL+ 27 A’zjsinz 0+ cos?0 }02 +0(o*)

oo (x,0) = 4 —%(2rAA'3 b A AT A2 47 A 542 4 A7)0 +0[0%)

For 80 we obtain the commutative Schwarzschild solution with 4% =1-2 [see Eq.
r

(2.1D)].
It is interesting to remark that, if we choose the parameters 6"" as in (4.1), then the
deformed metric gw(x,e) is diagonal as it is in the commutative case. But, in general,

for arbitrary 6", the deformed metric guv(x,e) is not diagonal even if the commutative

(non-deformed) one has this property. Therefore, we can conclude that the
noncommutativity modifies the structure of the gravitational field.
For the Schwarzschild solution we have:



A(r)=1-2, a= 2G2M; (4.4)
r c

The function A(r) is non-dimensional, but its derivatives 4", A" and A" have
respectively the dimensions L' L and L. As a consequence, all the components of
the deformed metric {guv (x,9) in (4.3) have the correct dimensions.

Now, if we introduce (4.4) in (4.3), then we obtain the deformed Schwarzschild

metric. Its non-null components are:
1 a(4r-3a)

- 2 4
g = - 67 +0(07),
! l_g 16r2(r-a)2
B
, 2t =17ar+170% , 4
gy =r"+ 0°+0(0"), 4.5)
32r(r-a)
2 2 2
§33:rzsin29+(r +or-o )cos 6-(1(2r-(1)92+0(e4)’
167(r-o)
Boo = _(1—3)——“(8“141“)92 +0(0*).
r 167

We can evaluate then the contributions of these corrections to the tests of General
Relativity. For example, if we consider the red shift of the light propagating in a
gravitational field [27], then we obtain for the case of the Sun:

Ah_ @ o8R-1a)g  oigs) (4.6)
L 2R 32R*
. ) 2GM 3
where R is the radius of the Sun. Because for the Sun we have o = =2.95-10"m
c
and R =6.955-10% m, then we obtain from (4.5):
AT7‘=2-10—6 219102402 + 0(6*). (4.7)

The noncommutativity correction has a value that is with about 18 orders less than that
which result from General Relativity. Therefore, presently it is not possible to verify
experimentally the noncommutativity correction to the red shift test of General Relativity.

5. Corrections to the Reissner-Nordstrom solution

The results from previous Sections apply to any spherically gravitational fields
having the gauge fields defined as in Egs. (2.5) and (2.6). In particular, they can be used
also for the Reissner-Nordstrom metric, with the function A(7) given by:

A(r):1—2—m+Q—2, (5.1

2
r r

where m is the mass and Q the electric charge of the point-like source of gravitational

field. It is very easy to verify that from Eqgs. (4.3) we obtain for 6 — 0, the commutative

Reissner-Nordstrom solution if we consider the expression (5.1).



Now, if we insert A(r) from (5.1) into Egs. (4.3), then we obtain the deformed
Reissner-Nordstrom metric. Its non-null components are:

1 N (= 2mr? + 3m>r? + 3072 —6mQ°r +20° 2

8,(r,0)= . (52)
! 1_2ﬂ+g 41*2(1’2—2171r+Q2)2
r VZ
4 3 2.2 2.2 2 4|2
sz(r,6)=r2+(r 17mr® +34m2r? + 270 —75m0%r +300° b 63

161/2(r2 —2mr+Q2)
cos? 0r* +2mr® —70%? —4m*r? +160%r —80* p?
161"2(r2 —2mr+Q2) ’
N (— 4mr® +80%r* +4m*r? —16mQ2r+8Q4b2
167"2(7’2 —2mr+Q2)

g33 (r,e) =r’sin?0+

, 5.4)

. . (5.5)
r r

80(r,0)=— 1_2_m+Q_2 _(4’"’”3—9Q21”2—llmzrz+30mQ2r—14Q4b2
o 4r°

It will be very interesting to study the gravitational singularities of the deformed scalar
curvature using these results. The work on this subject is in progress [29].

The expression (5.5) can be used to obtain the corrections to the thermodynamical
quantities due to the space-time noncommutativity. If we consider the corrected event
horizon radius up to the second order in 6 as

F=A+BO+C0?, (5.6)
then we can obtain the unknown coefficients 4, B, C by imposing the condition
éoo(fa 9):0- (5.7)

Substituting (5.6) into (5.7) and using the expression (5.5), we obtain the following
expression for the event horizon radius:

F=m+~m* -0 +
(48m4 +Jm? —0* (48m” — 64mQ? )~ 8807 m* - 0 +40Q4) , (58)
+ 0.
16(32m° +m” — 07 (32m* —32m°Q? + 40" )~ 48m°Q? +16mQ* |
The modified Hawking-Bekenstein temperature and the horizon area of Reissner-

Nordstrom black hole in noncommutative space-time to the second order of 0 are as
following respectively:

7o 1 d2(76) m* +mym* — Q*

= +
4n dr 2n(m+\/m2 —QZT
(448m° —16480%m” +21120%m® ~10910°m” +1790%m)

N
16n(m+\/m2 _0? )7 [Sms —120%m® +40*m +m* — 0* [Bm* —80*m” +Q4)J

+




Jm? =0 (22400 m" +25970*m* +10530°m’ + 612m" +840" ) +
7
t6nlm +fm? ~ 07 | m® —120% +40"m +Jm® — 0 (sm* —30°m* + 0"

(m? -0} (26402 m* - 4730*m* —152m° +510°)

+

+ +
167t(m+ m* - Q* )7 Bm® —120°m* +40*m++m* - 0 (8m4 —-80%m* +Q4)_
. ( 2_Q2)5/2(16Q2m2 _12m4) 92(5.9)

l6n(m+\/m2 _0? )7 8’ —120°m’ +40* m+m* —0* gm* —80%m* + 0* )
A=4nt? =4n(m+,/mz—Qz)2 +
nlm +\m* —Q° [6m4 —110°m* +50* + m* = Q° (6m3 —8Q2m)])92 (5.10)

8m® —120°m® + 40" m + \Im> — 0> (8m* —80°m* + 0*)
According to the Hawking-Bekenstein formula , the thermodynamic entropy of a

+

black hole is proportional to the area of the event horizon S = % , where 4 is the area of

the horizon. The corrected entropy due to noncommutativity of space-time is:

S N
+n(m‘tm16m4_llg2m2 +5Q4+\/FQ2(6m3—8Q12m)]ez(5'11)

43m* —120°m’ + 40*m + m* — 0> (3m* —80°m* + 0*)
If we consider the QO = 0 case, then we obtain the corresponding quantities for
Schwarzschild black holes.

6. Concluding remarks

Using the Seiberg-Witten map we determined the noncommutativity corrections to

the Schwarzschild solution up to the second order in the parameters 6"". Following the
Ref. [7], we reviewed first the de-Sitter gauge theory of gravitation over a spherical
symmetric commutative Minkowski space-time. Then, a deformation of the gravitational
field has been constructed along the Ref. [8] by gauging the noncommutative de-Sitter
SO(4,1) group and using Seiberg-Witten map. The corresponding space-time is also of
Minkowski type but endowed now with spherical noncommutative coordinates. We
determined the deformed gauge fields up to the second order in the noncommutativity

parameters 0" . The deformed gravitational gauge potentials (tetrad fields) éfl(x,G) have
been obtained by contraction of the noncommutative gauge group SO(4,1) to the
Poincaré (inhomogeneous Lorentz) group ISO(3,1). As an application, we calculated
these potentials for the case of the Schwarzschild solution and defined the corresponding
deformed metric g,,, (x,O). The corrections appear only in the second order of the

expansion in0, i.e. there are no first order correction terms. For the calculations we used
an analytical program conceived for the GRTensor II package of the Maple platform.



We have considered also the red shift test in the noncommutative theory and

determined the value of the relative displacement AT}L for the case of Sun. The result

shows that the correction is too small to have observable effects.

Having found the deformed solutions for a noncommutativity theory of gravy we
have been breaking new ground towards approaching the black hole physics on non-
commutative space-time [29].

The corrections for the event horizon radius, Hawking temperature and the entropy of
the black hole have been evaluated. It is important to emphasize that in the case of
Reissner-Nordstrom black hole we considered the commutative (non-deformed)
electromagnetic field as a first step to obtain the solution. It remains, as an open question,
to give a method to introduce into the model a deformed electromagnetic field.
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