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Using a gauge theory of the gravitational field we build a metric with spherical
symmetry. We use the theory based on the gravitational gauge group G to obtain a
spherical symmetric solution of the field equations for the gravitational potentials.
We define the gravitational gauge group G and then we introduce the gauge covariant
derivative D,,. The strength tensor of the gravitational gauge field is obtained and a
gauge invariant Lagrangian is then constructed. The field equations of the gauge
potentials are written and a gravitational energy-momentum tensor (7,),, is
determined. In such a theory the motion of a test particle may be assimilated with a
spontaneous symmetry breaking field theory: the gauge field that mediates the
gravitational interaction between the source field and the test particle spontaneously
breaks the vacuum symmetry, generating a Reissner-Nordstrom type metric. All the
calculations have been performed by GR Tensor II computer algebra package,
running on the Maple 7 platform, along with several routines that we have written for
our model.
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1. INTRODUCTION

The gauge theories are fundamental in the field theory and, in particular, in
the elementary particle physics [1]. The three non-gravitational interactions
(electromagnetic, weak, and strong) are completely described by means of gauge
theory in the framework of the Standard Model (SM).

First of all, the gauge theory of the unitary groups SU(N) is of fundamental
importance in elementary particle physics. The SM of strong and electroweak
interactions is based on the gauge theory of SU(3)x SU(2)x U(1) group. In addi-
tion, the “Grand Unification” is described by the gauging of SU(5) group [1].
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Secondly, the Poincaré group (Lorentz transformations and space-time
translations) is also of a fundamental importance in any field theory. After
pioneering works of Utiyama [2], Sciama [3,4], and Kibble [5] it was
recognized that gravitation also can be formulated as a gauge theory. The gauge
groups considered in gauge theory of gravitation are Poincaré group [6],
de-Sitter group [7, 8], affine group [9, 10], etc. It is believed that the formulation
of gravity as a gauge theory on a Minkowski space-time could lead to a
consistent quantum theory of gravity.

Recently, N. Wu [11] proposed a gauge theory of General Relativity (GR)
based on the gravitational gauge group (G). The gravitational interaction is
considered in this theory as a fundamental interaction in a flat Minkowski
space-time, and not as space-time geometry.

In this paper we use the theory based on the gravitational gauge group G to
obtain a spherical symmetric solution of the field equations for the gravitational
potentials. In Section 2 we define the gravitational gauge group G and then we
introduce the gauge covariant derivative D,. The strength tensor of the
gravitational gauge field is obtained and a gauge invariant Lagrangian is
constructed. The field equations of the gauge potentials are written and a
gravitational energy-momentum tensor (7,),, which is a conserved current is
determined. It is shown that the theory of the gravitational field based on the
gravitational gauge group G is equivalent to the General Relativity of Einstein.

Section 3 is devoted to the case of a model when the gravitational gauge

potentials A (x) have spherical symmetry. The corresponding non-null compo-

nents of the strength tensor F),, of the gravitational gauge field are obtained and
then the gauge field equations are written. An analytical solution of these
equations, which induce the Reissner-Nordstrom type metric on the gauge group
space, is then determined. In Section 4, the motion of a test particle in a gravita-
tional field with spherical symmetry, may be assimilated with a gauge field theory
with a spontaneous symmetry breaking: the gauge gravitational field breaks
spontaneously the symmetry of the vacuum state generating the kink solution.

2. THE TENSOR OF THE GAUGE POTENTIALS

The gravitational field is described in GR by the metric tensor of a curved
space-time. In the gauge theory based on the gravitational gauge group G the
gravity is treated as a physical interaction in a Minkowski (flat) space-time and
the gravitational field is represented by gauge potentials.

In the following Sections we suppose that the gravitational gauge potentials
have spherical symmetry and obtain a Reissner-Nordstrom type solution of the
field equations.
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The infinitesimal transformations of group G are of the form [11]:
U(e)=1-¢*P,, a=0,1,2,3, (2.1

where g, are the infinitesimal parameters of the group, and P, =—i0, are the

generators of the gauge group. It is known that these generators commute each
other

[F..B;]=0. 22)

However, this property of the generators does not means that the
gravitational gauge group is an Abelian group, because its elements do not
commute [11]

[U(g).U(gy)]#0. (2.3)

There is a difference between the group T of space-time translations and
the gravitational gauge group G. Space-time translations of T are coordinate
transformations, that is, the objects or fields (physical systems) in space-time are
fixed while the coordinates describing the motion of the physical system undergo
transformation. But, under the transformations of the gravitational gauge group
the space-time coordinate system is fixed, while the objects or fields undergo
transformation. Therefore, the gravitational gauge group G contains all
dynamical information of interactions and it is convenient to use it for studying
the gravitational field.

Let us suppose now that ¢(x) is a scalar field. Then its gravitational gauge

transformation under G is:
d(x) > ¢'(x)=U(e)d(x). (2.4)
Because 0,U(e)#0, the partial derivative of ¢(x) does not transform

covariant under the gauge group G
8,0(x) > 0,0'(x) = U (e)(8,4(x)). (2.5)

In order to construct an action which is invariant under local gauge
transformations with parameters depending of coordinates &* =¢%(x), it is
necessary to define a gauge covariant derivative [15, 16]

D,=0,-igA,(x), (2.6)

where A, (x) is the gauge gravitational field (potential) with values in the Lie

algebra of G and g is the gauge coupling constant of the gravitational interaction.
The law of transformation under the gauge group of this potential is:

' -1, 1 -1
A, > A =UAU +§U(6“U )- (2.7)
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The derivative D, has the property of gauge covariance under the gauge
group:
" -1
D,—>D,=UD,U"". (2.8)
The gravitational A, (x) gauge field can be expanded as a linear combi-

nation of generators P,
A, (x)zAg (x)P,, (2.9)

where Af (x) are the gravitational gauge potentials, i.e. they are the components

of the gravitational gauge field.
We define now new gauge gravitational potentials

Gy (x)=35 —g At (x), (2.10)
and introduce their inverses G with the properties
GLGP =388, (2.11a)

G! G& =3b. (2.11b)

Using these components, we can define a metric on the gauge group space
as follows:

8op =N G4 Gy, (2.12a)
g?P =m* G2 GB, (2.12b)

where n,,, = diag(1,1,1,-1) is the metric on the Minkowski space-time and n*

denotes its inverse.
The strength tensor of the gravitational gauge field is given by the standard
expression [12—14]

Fi :é[Du,DVJ. (2.13)

Then, its components, defined by FHV = FH"@ P, are

R =0,A% —0,A% —g AR O A% + g AP G AL (2.14)

The strength tensor transforms covariant under the gravitational gauge
transformations

F, =UF, U™ (2.15)

In his work [11] N. Wu chooses the Lagrangian of the gravitational gauge
potentials in the form
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LzﬁLO, (2.16)
where g =det(g,,, )and
—_ 1 o pve o B _Low Gy Go po pB
L, 16” N 8ap Fuv F; n GBG N F

pw tps g o “uv fpo
1

4

(2.17)

+-n* Gy G§ Rl FR.

This expression is quite special for gravitational interactions. Indeed, for
ordinary SU(N) gauge field theory it is possible to construct only one invariant
which is a quadratic form of field strength. In gauge theory of gravitation there
are three different gauge invariant terms which are quadratic forms of field
strength of gravitational gauge field. The integral of action associated to the

Lagrangian L is defined as usually:
S= Id4"L’ (2.18)

It can be verified that this action has gravitational gauge symmetry, i.e. it is
invariant under the gravitational gauge transformations.
The first order variation of the gravitational gauge fields is

SAL (x)=—eP oy AY (x), (2.19)
and the corresponding first order variation of the action is

8= [d*xsea, (T, (2.20)
Here ( l)i is the inertial energy-momentum tensor, whose definition is

_( oL
(1) = g(_ — jﬂ?’ 0 AP + 8 Loj. (2.21)
[Tilia%

The global gravitational gauge symmetry of the system gives out the
conservation law of inertial energy-momentum tensor

0, (). =0. (2.22)

o

This means that the inertial energy-momentum tensor is a conserved
current.
The Euler-Lagrange equations for gravitational gauge field are

oL _5 [2L_)-o. (2.23)
oAy M| 80,4
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Introducing (2.16)—(2.17) into the Eqs. (2.23) we obtain the following field
equations of the gravitational gauge fields A (x)

1 1 1
au(zn“pnvcgaBFp% _ZanFthx +Znupr\;x

224
~Lnwesy Ff + Lyvwest R = —¢| (1) +(T,,)! o2y
2T1 a’pB 2“ alpp) =~8| U o m/o,

(T o L
where (Tg) is the gravitational energy-momentum tensor, which is the source
o

of gravitational gauge field [11] and (Tm ); is the tensor of the field of point-like

source Q positioned in the origin of the coordinate system.

3. SPHERICALLY SYMMETRIC GAUGE FIELD

We apply the previous results to the case when the gravitational gauge
potentials A (x) have spherical symmetry. We choose these potentials in the

form
A(r) 0 0 0
o =1 0
gr
o — 1 —_
Au(x)— 0 0 rst 1 0 , 3.1)
grsin®
A(r)
0 0 0 -
1-gA(r)

where (r, 0, o, t) are spherical coordinates on the gauge group space, and A(r)
is a function depending only of the variable r. Then the new gravitational gauge
potentials G (x), defined by the Eqs. (2.10), become

1-gA(r) 0 0 0
o L o 0
r
o _
%= o o1 o | G2
rsin®
1
0 0 1
1-gA(r)
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and their inverse are

1
——0 0 0
l—gA(r)
(_;&l: 0 r 0 0 ) (3.3)

0 0 rsin6 0
0 0 0 1-gA(r)

The components g,g of the metric tensor defined by the Eq. (2.12a) are
given then by

—L 0 o 0
(1-gA(r))
Sup = 0 r2 0 0 , (3.4)
0 0 r2sin?0 0
0 0 0 —(1-gA(r)y

The non-null components Fy, of the strength tensor field defined in the
Eq. (2.13) are

F3 =sin0, F3 :—l—gé(r)
gr
' (3.5)
o_ A (”) 3 _ cosO

07 1—gA(r) "B gr?sin20’

where A’(r) denotes the derivative of A(r) with respect to the spatial variable r.

Introducing (3.4) and (3.5) into the Eq. (2.24), we obtain the following
gauge field equations

gA? +2grAA'—2A-2rA" = 0. (3.6)

Therefore, the gauge field equations (2.24) for the previous considered
model reduce to only one independent equation for the unknown function (gauge
potential) A(r).

The unknown function A(r) has therefore the form

1+ 1—9+£2
A(ry=———11— (3.7)

where o and 3 is an arbitrary constants of integration.
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Now, introducing the solution (3.7) into the Eq. (3.4), we obtain the
non-null components g, of the metric tensor on the gauge group space

1 g0 0 0
_o, P
1 s 2
2
gaﬁ — 0 r 0 0 (38)
0 0 r2sin’0 0
0 0 0 —(1—ﬁ+%)
rr
The corresponding line element is
2
ds? =— U~ 4 12(46% +5in? 0 dg?) —(1 —ﬁ+%)c2dﬂ, (3.9)
1- o + E r r
r r2

and it describes the gravitational field of our model.

If we chose o = 2%(;, where G is the gravitational constant, M is the mass
c
I . 0%G .
of the source of gravitational field and P = 1 7> then the metric g,g
ngoc

corresponds to the Reissner-Nordstrom type solution for the Einstein equation of
the gravitational field created by a point-like mass m in vacuum.

We remember that this line element is defined on the gravitational gauge
group space and that the space-time remains a Minkowski (flat) one.

In what follows we will write the metric (3.9) under the form:

ds? = ¢*dr? +r? (d0? +sin? 0de? ) - eV c2ds?, (3.10)

where A and v are function only of the radial coordinate r, which in the case of
Reissner-Nordstrom metric are given by the expression:

voet=1-9y B (3.11)

e ’ r—z,

with o and f the constants above mentioned.

4. MATHEMATICAL MODEL WITH SPONTANEOUS SYMMETRY BREAKING

We consider the motion of a test particle of mass m, in the gravitational
field with spherical symmetry produced by a source having the mass M. This
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gravitational field is supposed to have spherical symmetry and the square of the
line element given by Egs. (3.10)—(3.11).
The equation of motion for the test particle are given by geodesics [17]:

d?x dxY dxP _
12 +1"5p 0 ds =0. 4.1)

If we use the metric coefficients in Eq. (3.10), then we can obtain the
equations of motion for the test particle. The differential equation for the
coordinate 0 has the form:

2
d?0 _ 2drdo _ Ao\ _
52 + s ds cosﬁ( i) = 0. 4.2)
In order to simplify this equation we chose the central mass M (the source of the
gravitational field) and the initial velocity vector in the coordinate plane 6 = %
Then, we have ‘ZZ—? =0, and the Eq. (4.2) becomes:
2
O, (4.3)

ds?

Therefore, the trajectory of the test particle is contained in the equatorial plane
(the motion is plane).
The other equations of motion, resulting from (4.1), are:

2 2 do ) g
S - (@) el o e
d’¢ 2 drdo
Po 2drdo_, (4.4b)
&, dvdrdr
ds? * dr ds ds 0. 40

The Egs. (4.4b) and (4.4c) can be easy integrated and they give (after a first
integration):

do
2 —_—
re C, (4.5a)
and respectively:
dl _ —v
= Cye™, (4.5b)

where C,, C, are arbitrary constants of integration.
On the other hand, if we use the expression (3.10) of the line element, and
the condition of spherical symmetry e* =e™", we obtain:
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2 2 2
—v(dr 2(d(P) V( dt) __
e (ds) +r s +e Cds 1. (4.6)

Introducing the Egs. (4.5a)—(4.5b) into Eq. (4.6), we can write the equation
of motion for the test particle m in the form:

r

2 2
2¢7V|( dr (Cz) - 2
(Cl) r4 [d_(pj +—2 —e VC2 (C2) —1=0. (47)
Now, we will suppose that the metric (3.10) is of Reissner-Nordstrom type,
i.e. the metric coefficients are given by Eq. (3.11).
Then, making the change of coordinates

lyp_o @
597 =".6=7, (4.8)
we obtain from (4.7):
d_¢2:_ By 14 B 6. 2a?
(d&j (”cﬁj"’ MEARFEA SR @2

where the constant C, is choosen equal to: C, =% (i.e. Cy=11inunits ¢ = 1).

If we take the derivative of (4.9) with respect to the new variable &, then we
obtain:

d*¢ p 3 3B s
—=—| 1+ |0+¢" —— 4.10
e L) S @.10)
But the Eq. (4.10) can be obtained from the variational principle
as=5dev=o (4.11)
(with dv the elementary volume) applied to the Lagrangian density
2
_1(90) _
L= 3 (8&) V(9), (4.12)
with the potential
_ (1 B0 B s
V(p) = (I-FC]Z >t 8a2¢ (4.13)

Now, if we choose %=—0.2 and %:—0.1, then Eq. (4.10) has the
(o 8a

solution ¢, =0, ¢, =20.768. By calculating the second derivative with respect to
¢ of the potential entering (4.13) and substituting the extreme values into the
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result of this differentiation we find Vj, (0)=-0.8, Vo (£0.768)=2.013>0, i.e.

the solutions ¢ ==20.768 are associated with the minimum energy [18]. Hence,

the model under consideration has a double degenerated vacuum state (Fig. 1)
and the system source test-particle has a spontaneous symmetry breaking (SSB).

37 V(phi)

2

-
Fig. 1 — The potential energy for the case of SSB.

37 V(phi)

2-

-3
Fig. 2 — The potential energy for the case of ES.
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p p

If we chose —2:—1.8 and —2:—0.1, then the vacuum state is not
G 8a

degenerated (Fig. 2), and therefore we have an exact the symmetry (ES) of the
Lagrangean (4.12).

These results give an extension of those obtained for the Schwarzschild
metric [19] to the case of the Reissner-Nordstrom type metrics.

5. CONCLUDING REMARK

We constructed a metric with spherical symmetry using a gauge theory
based on the gauge gravitational group. In this theory, the gravitational
interaction is considered as a fundamental interaction in a flat Minkowski
space-time, and not as space-time geometry. We define the gravitational gauge
group G and then we introduced the gauge covariant derivative D,,. The strength
tensor of the gravitational gauge field is obtained and a gauge invariant
Lagrangian is constructed. The field equations of the gauge potentials are written
and a gravitational energy-momentum tensor (7,),, is introduced. The gauge
field equations [see Eq. (2.24)] for the previous considered model reduce to only
one independent equation for the unknown function (gauge potential) A(r). We

obtain the non-null components g,g of the metric tensor on the gauge group
space [see Eq. (3.8)].

The Reissner-Nordstrom type metric on the gauge group space, is then
determined. The motion of a test particle in a gravitational field with spherical
symmetry can be assimilated with a gauge field theory with a spontaneous
symmetry breaking: the gauge gravitational field breaks spontaneously the
symmetry of the vacuum state generating the kink solution.

The trajectory of the test particle is contained in the equatorial plane (the
motion is plane). The model under consideration has a double degenerated
vacuum state (see Fig. 1) and the system source test-particle has a spontaneous
symmetry breaking (SSB).
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