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Most of the astronomical objects in the universe (planets, stars or galaxies)
have some form of rotation (differential or uniform). Hence the possibility that the
universe itself could be rotating has attracted a lot of attention. The existence of such
a small rotation, when extrapolated to the early stages of the universe, could have
played a major role in the dynamics of the early universe, and possibility also in the
processes involving galaxy formation. In this paper we have continued the studies
from our previous works about the electromagnetic field in a rotating universe.
Supposing the private case of an electromagnetic field we have suggested on
establish the concrete dependence on the space-temporal coordinates of the electric
and magnetic fields. The calculations are performed with the Mathematica and Maple
programs which have attached the GrTensor platform. The physical meaning of the
electromagnetic field properties is also derived from the graphs of electric and
magnetic components against x-axis coordinate and mass density respectively.
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INTRODUCTION

In this paper we have continued the studies from our previous works about
the electromagnetic field in a rotating universe [1–4]. The main focus of this
contribution is to integrate the equations of the electromagnetic field in the
Gödel universe background. In general, it is very difficult to treat this problem.
Therefore we have concentrated on a special case of electromagnetic field and
the Maxwell’s equations within a tetrad frame associated with Gödel metric are
obtained.

It is very important to mention here the computations performed by Cohen,
Vishveshwara and Dhurandhar which are of considerable interest in general
relativity. They gave a prescription for perturbative electromagnetic fields
investigated in the Gödel universe using the Debye potential (two-component

 Paper presented at the National Conference on Applied Physics, June 9–10, 2006, Galaþi,
Romania

Rom. Journ. Phys., Vol. 53, Nos. 1–2 , P. 405–415, Bucharest, 2008



406 Brindusa Ciobanu, Irina Radinschi 2

Hertz potential) formalism [5]. Their method can be extended to space-times
with local rotational symmetry, the Gödel universe being a specific example of
this class [5, 6]. We have considered the orthonormal tetradic formalism for our
investigations, while Cohen, Vishveshwara and Dhurandhar adopted the Newman-
Penrose method.

Most of the astronomical objects in the universe (planets, stars or galaxies)
have some form of rotation (differential or uniform). Hence the possibility that
the universe itself could be rotating has attracted a lot of attention. But even
though observational evidence of cosmological rotation has been reported, it is
still a controversial subject [7–11]. Our present day universe is rotating very slowly,
if at all. However, the existence of such a small rotation, when extrapolated to
the early stages of the universe, could have played a major role in the dynamics
of the early universe, and possibility also in the processes involving galaxy
formation [9]. Recently, Nodland and Ralson reported to have a discovered a
cosmic axis. Kühne argues that their axis is supported by an earlier independent
observation on the spin axis of galaxies in the Perseus- Pisces supercluster. The
large alignment of this supercluster (over a distance of at least 130 million light
years) cannot be explained within the framework of conventional models of
galaxy formation. He explaines this approach of the subject within the frame-
work of Gödel’s cosmology [10, 11].

The absence of an explicit cosmological solution of the Einstein’s field
equations that can describe both the expansion and the rotation of the universe
requires some approximations. The Friedmann models (those with a Robertson-
Walker metric) describe accurately the universe expansion, but they cannot explain
the observed rotation of this one (ω = 10–13 rad/year), [7, 12]. The cosmological
problem of the rotation of the universe has been studied also by Ellis, Olive and
Grøn [13, 14], but the first important model of the universe in rotation, to which
corresponds a new cosmological solution of the Einstein’s equations is the model
proposed in 1949 by Kurt Gödel [15].

Gödel universe has a very unusual property. In the Gödel universe closed
timelike curves are formated. Therefore it allows traveling backwards in time. If
you enter in some of these timelike curves, you can return to the past. “You enter
a rocket, and you take a journey in the universe along a certain path. Then you
will return to the starting point before you started” [16]. The Gödel model is
perhaps the best known example of a solution of Einstein’s field equations in
which causality may be violated. It thus became a paradigm for causality
violation in gravitational theory. In their work [17], Gleiser, Gürses, Karasu and
Sariouğlu verified that “the spacetimes described by Gödel-type metrics with
both flat and non-flat backgrounds always have closed timelike or null curves,
provided that at least one of the ui(xl) ≠ constant.” They also showed “that the

geodesics of Gödel-type metrics with constant ku are characterized by the (D-1)-
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dimensional Lorentz force equation for a charged point particle formulated in
the corresponding Riemannian background.” Recently, there has been renewed
interest in this kind of space-time because of the discovery of a supersymmetric
solution of N = 1 five dimensional supergravity with very similar features [3],
[15–19]. Another essential part of Gödel’s relativistic model is isometrically
immersed into a six- dimensional pseudo-Euclidean space [20].

On the other hand, field quantization in a Gödel-type space-time has received
scant attention in the literature. The difficulties in the standard field quantization
in Gödel universe have been explicitly pointed out by Leahy and consists
maintly of the absence of a complete Cauchy surface and of the incompleteness
of the mode solutions to the field equations. Despite some attempts, the meaning
of a quantum field theory in this background is still unclear [18, 21].

Recently, Caldarelli and Klemm gave a particular solution to the resulting
that describes a Gödel-type universe preserving one quarter of the supersymme-
tries. They showed that external dust sources (as well as a negative cosmological
constant) are necessary ingredients to obtain the Gödel universe or its genera-
lizations [3, 22].

It was shown that low energy string theory admits supersymmetric solu-
tions of the Gödel-type [19, 23, 24].

2. THE  GENERAL  EQUATIONS  OF  THE  GÖDEL  UNIVERSE

Gödel universe is one of the most intriguing solutions of the Einstein field
equations [25]. In this section of our paper we briefly review some important
properties of the Gödel universe [1, 2, 3, 26, 27]. We present the general-
relativistic equations that have been used to describe this model.

The Gödel metric can be written in the form
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where ( )/ , / , / , /x ct a x a y a z aα =  are the adimensional variables and a is a
nonvanishing constant with dimension of length, namely
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where G represents the constant of the universal attraction and ρ is the mass
density of the matter, which creates the gravific field.

The gravitic field is created by the energy- momentum tensor of a perfect fluid
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where ρ′ is the rest density of energy (in rest)/c2.
The coordinates xα are comoving coordinates (the model of the comoving

fluid), so that the quadrispeed has the form

( ) ( )11 , 0, 0, 0 ,         , 0, , 0xu dx ds u a ae
a

α α
α= ≡ =  (6)

The movement of the comoving particles (the observers) in this system of
reference is determined by the following kinematical parameters:
– the acceleration vector

; 0;    a 0a u u uα α β α
β α≡ ≡ =  (7)

– and the vorticity tensor

 ; ; 0,          0u u uβ
αβ α β β α αβω = − ≠ ω =  (8)

According to the formula (9) of the quadrispeed, the only nonvanishing
components of the angular speed tensor are given by

1

12 21
xaeω = ω = −  (9)

The scalar expansion θ and the shear tensor σαβ are like-wise null. This fact
means that the particles of reference (the observers) are in free falling and they
turn round one in comparison with the other rigidly and uniformly.

The angular speed vector may be written in the form

( )
1 2

; ;
1 1
2 2

u u g u u−α αβγδ αβγδ
β γ δ β γ δω = − η = − − ε  (10)

Therefore the only nonnull component of the angular speed is

3
2

1
2a

ω =  (11)

and it results that the angular speed of matter is given by

 ( )1/ 2 1
2a

α
αΩ = −ω ω =  (12)
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The rotation is of a dynamical importance when the ratio between the
rotation period 2 /π Ω  and the free-fall time 1 Gρ  is of the order unity. This

condition is satisfied in the Gödel universe for 2 4 .GΩ = π ρ  For each reference
particle, the Gödel universe turns round uniformly as a solid-rigid body with
constant angular speed, around the compass of inertia of each observer at rest in
the substance (there is no difference between these observers in the rotation
center) [2, 3].

It is well known that in the classical case, the thermodynamic equilibrium
exists only for the systems, which move with uniform speed (with the center of
mass in rest in some frame), but for the systems when all their components also
have a common constant angular speed around an axis [2, 28]. This last condition
is satisfied in the Gödel universe.

In their paper [25], Barow and Tsagas used covariant techniques to describe
the properties of the Gödel universe and considered its linear response to a
variety of perturbation. They showed that the stability of the Gödel model depends
primarily upon the presence of gradients in the centrifugal energy, and secon-
darily on the equation of state of the fluid.

In the case of the Gödel fluid, the equations

2 1,          p c Tds d p⎛ ⎞′= ρ = ε + ⎜ ⎟γ⎝ ⎠
 (13)

lead to following results

2 ,       
p p

c Tε = − =
γ γ

 (14)

and

( )2logS p= γ  (15)

where T = the proper temperature of the fluid
S = the specific proper entropy
γ = the coefficient of specific heat.

This fact means that the Gödel fluid behaves like a fluid with a coefficient
γ = 2.

For a perfect fluid we can write the equation of state

( )2 1p c ′− = − γ ρ  (16)

where 1 ≤ γ ≤ 2. The superior limit γ = 2 implies the fact that the sound speed

sv dp d ′= ρ  (17)

becomes equal to the light speed c [26].
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Zel’dovich [29] has motivated that an equation of state with 4/3 ≤ γ ≤ 2 is
possible and can be available for an extremely dense matter, like that from the
final stage of a gravific collaps. The limit case γ = 2 is the case of the “rigid
matter” (or the extreme fluid) [1–4].

3. THE  TETRADIC  FORM  OF  MAXWELL’S  EQUATIONS
IN  THE  GÖDEL  UNIVERSE

The main focus of our paper is to integrate the equations of the electro-
magnetic field in the Gödel universe background. In general, it is very difficult
to treat this problem. Therefore we will concentrate on the special case, namely
we will obtain the Maxwell’s equations within a tetrad frame associated with
Gödel metric.

In our previous works we have described how we can performe to compute
the components of an orthonormal tetradic system in the Gödel universe [1, 3, 27].

Processing the expression (1) such as

( )( ) ( )( )2 ,  , 0,1, 2, 3,  , 0,1, 2, 3ds dx dxα βγ μ
αβ γ μ= η λ λ α β = μ γ =  (18)

where the Minkowskian matrix has the diagonal terms: (1, –1, –1, –1), we have

established an ensemble of quadrivectors ( ) ,α
υλ  (of label α), named mark-vectors

or tetrads. This ensemble of quadrivectors defines a local frame. We have
obtained the mutual components of the tetrads
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In accordance with the general formula, we have founded the nonvanishing
components of the objects of anholonomity in the Gödel universe [1, 3, 30]

( )( )
( )

( )( )
( )

( )( )
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It is very known that in an arbitrary coordinate frame, the Maxwell’s
equations are

*
 ; 0G αβ

β =  (21)

     ;G Jαβ β
α =  (22)

where Gαβ represent the contravariant components of the electromagnetic field
tensor (α, β = 0, 1, 2, 3) and G*αβ are the components of the dual associated to
the tensor Gαβ which are calculated according to the formula
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From the relations (21) and (22) we can establish the form of the
Maxwell’s equations, written in a tetradic coordinate frame
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We note with G(n)(k) symbols the local components of the electromagnetic field
tensor and with J(α) the tetradic components of the current density quadrivector.

The tetradic form of the Maxwell’s equations in vacuum becames [3, 4]:

(0)(0)* * * * * *
(0)(1) (0)(2) (0)(2) (0)(3) (0)(1)

,1 ,0 ,2 ,3,0

*
(1)(2)

(1)(0)* * * * * *
(1)(1) (1)(2) (1)(2) (1)(3) (1)(1)

,1 ,0 ,2 ,3,0

(2)(0)* * * *
(2)(1) (2)(2) (2)(2)

,1 ,0 ,2,0

2 2

2 0

2 2 0

2 2

x

x

x

G G G e G G G

G

G G G e G G G

G G G e G

−

−

−

+ − + + + +

+ =

+ − + + + =

+ − + +
*

(2)(3)
,3

(3)(0)* * * * * *
(3)(1) (3)(2) (3)(2) (3)(3) (3)(1)

,1 ,0 ,2 ,3,0

(0)(0)
(2)(0) (1)(0) (2)(0) (3)(0)

,0 ,1 ,2,0 ,3

(1)(0) (0)

(2)(1)
(0)(1) (1)(1) (2)(1)

,0 ,1 ,2,0

0

2 2 0

2 2 2 2 2

2 2

2 2

x

x

x

G

G G G e G G G

G G G e G G

G a J

G G G e G

−

−

−

=

+ − + + − =

− + + + +

+ =

+ + + (3)(3) (1)(1) (1)
,3G G J a+ + =

 (26)

Supposing the private case of an electromagnetic field characterized by the
quadrivectors: 2(0, 0, , 0),J Jα  2(0, 0, , 0)A Aα  with α = 0, 1, 2, 3 where Jα is
the current density quadrivector and Aα is the quadripotential, one can find the
solution of the Maxwell’s equations.

In what follows, and mostly for sake of completeness, we give a physical
meaning of the parameters. We observe that the norm of the quadrivector current
density is positive, therefore this current is a conduction one. We specify that the
Gödel universe cannot admit conduction current along z-axis, but only convection
current along this axis (or the convection current is prevalent along z-axis)
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The covariant components of the quadripotential are
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where A(2) is the tetradic component of the quadripotential.
The tetradic components of the quadricurrent J(α) are given by
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According with the assumptions regarding the electromagnetic field, the
relations (26) lead to a large system of partial differential equations [4]
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4. THE  ELECTRIC  AND  MAGNETIC  FIELDS  IN  THE  GÖDEL  UNIVERSE

In order to establish the expressions for electric and magnetic parts of field
we impose to the components of the quadripotential Aμ the gauge-conditions.
And by solving the equations (31) of the electromagnetic field one obtains

( )2 / 2 2 / 22,    x xA ce A c e
a

−= =  (32)

Knowing the relations

*,    e u G h u Gα βα α βα
β β= =  (33)

where ( )1 , 0, 0, 0u
aα =  is the quadrispeed of the element of fluid, the compo-

nents of electric and magnetic fields quadrivectors have the expressions

( )2 / 2: 0,2 2 , 0, 0xe D eα ρ  (34)

( )2 / 2: 0, 0, 0,
2

xDh eα ρ  (35)

The electric and magnetic fields depend on the x-axis coordinate and a
parameter, which depends also on the mass density ρ. Plotting (34) and (35) with
the eα and hα respectively on z-axis, against x-axis coordinate and R = ρ × 1031

(g⋅cm–3) we obtain the graph from Fig. 1.

CONCLUSIONS

The aim of this work is the study of the effect of rotation of universe on
electromagnetic field. In the first and second sections of our paper, after a brief
introduction to our problem, we brought out some important properties of the
Gödel universe model. The main focus of our paper was to integrate the
equations of the electromagnetic field in the Gödel universe background. In
general, it is very difficult to treat this problem. Therefore we concentrated on a
special case, and the Maxwell’s equations are derived using the orthonormal
tetradic formalism. In other words, in the section 3, the components of an
orthonormal tetradic system and the objects of anholonomity in the Gödel uni-
verse was computed. Next, we established the form of the Maxwell’s equations,
written in a tetradic coordinate frame. The private case of an electromagnetic
field in vacuum which interacts with the gravitational field of the Gödel universe
is presented. We conclude that the quadrivectors of electric field and magnetic
field respectively do not have temporal components, but only spatial orthogonal
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components. In this context, the Gödel universe does not admit conduction
current along z-axis, but only convection current, or the convection current is
prevalent along z-axis. The physical meaning of the electromagnetic field
properties is also derived from the graphs of electric and magnetic components
against x-axis coordinate and mass density respectively. As a final remark, the
dependence of the components on the single spatial x-coordinate is an expo-
nential one.
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