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In this paper we extend the investigations related to the energy localization
and we move on towards modeling the connection between the energy distributions
of a metric which describes a recently derived non-asymptotically flat black hole
solution in dilaton-Maxwell gravity. Energy distributions are evaluated with the
Møller and Landau and Lifshitz energy-momentum complexes. The energy
distributions depend on the mass M, charge Q of the black hole, γ parameter and r
coordinate. We established a connection between the terms of the ratio of the energy
distributions in the Landau and Lifshitz and Møller prescriptions. All the terms
contain the quantity Qnrn – 1M–n and, also, a function f(γ) which depends on the γ
parameter. The Landau and Lifshitz and Møller prescriptions turn out to be powerful
tools for energy-localization for various physical systems.
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INTRODUCTION

One of the most interesting problems in General Relativity, energy-
momentum localization is connected to the use of various energy-momentum
complexes. Also, the subject of the localization of energy continues to be an
open one since Einstein [1] has given his important result of the special theory of
relativity that mass is equivalent to energy. The method of localization of energy
by using several energy-momentum complexes has many adepts but there was,
also, many criticism related to the use of these prescriptions. Their main lack is
that most of these restrict one to calculate in quasi-Cartesian coordinates. Only
the Møller energy-momentum complex allows us to make the calculations in any
coordinate system. After the Einstein work [1–2], a plethora of energy-
momentum complexes were constructed, including those of Einstein [1–2],
Landau and Lifshitz [3], Papapetrou [4], Bergmann [5], Weinberg [6] (ELLPW)
and Møller [7].
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This important issue, the energy-momentum localization by using the
energy-momentum complexes was re-opened in the last two decades by
Virbhadra and his collaborators and many interesting results have been obtained
in this area [8]. Misner et al. [9] sustained that to look for a local energy-
momentum means that is looking for the right answer to the wrong question.
Also, they concluded that the energy is localizable only for spherical systems.
Cooperstock and Sarracino [10] demonstrated that if the energy is localizable in
spherical systems then it is also localizable in any space-times. Chang, Nester
and Chen [11] showed that the energy-momentum complexes are actually
quasilocal and legitimate expression for the energy-momentum. They concluded
that there exist a direct relationship between energy-momentum complexes and
quasilocal expressions because every energy-momentum complexes is associated
with a legitimate Hamiltonian boundary term. Very important is the Cooperstock
hypothesis [12] which states that energy and momentum are confined to the
regions of non-vanishing energy-momentum tensor for the matter and all non-
gravitational fields.

Regarding Møller's prescription, there are many good results [8] that
recommend it as a reliable tool for energy-momentum localization. According to
the Lessner opinion [13], Møller's energy-momentum complex is significant for
describing the concepts of energy and momentum in General Relativity. He
sustained that The energy-momentum four-vector can transform according to
special relativity only if it is transformed to a reference system with an everywhere
constant velocity. This cannot be achieved by a global Lorentz transformation.

As we pointed out, the energy-momentum complexes are powerful tools for
energy-momentum localization. In this connection, we extend the investigations
related to the energy localization and we move on towards modeling the
connection between the energy distributions of a metric which describes a
recently derived non-asymptotically flat black hole solution in dilaton-Maxwell
gravity. Energy distributions are evaluated with the Møller and Landau and
Lifshitz energy-momentum complexes. We established a connection between the
terms of the ratio of the energy distributions in the Landau and Lifshitz and
Møller prescriptions. Also, we make a comparison and we find some connections
and differences between the coefficients in the Landau and Lifshitz and Møller
prescriptions. Through the paper we use geometrized units (G = 1, c = 1) and
follow the convention that Latin indices run from 0 to 3.

2. MODELING  THE  CONNECTIONS  BETWEEN  LANDAU  AND  LIFSHITZ
AND  MØLLER  PRESCRIPTIONS

The low energy effective theory largely resembles general relativity with
some new “matter” fields as the dilaton, axion etc. A main property of the low-



3 Energy distributions of a dilaton-Maxwell gravity solution 31

energy theory is that there are two different frames in which the features of the
space-time may look very different. These two frames are the Einstein frame and
the string frame and they are related to each other by a conformal transformation

2( )E Sg e g− Φ
μν μν=  which involves the massless dilaton field as the conformal

factor. The string “sees” the string metric. Many of the important symmetries of
string theory also rely of the string frame or the Einstein frame.

Recently, a non-asymptotically flat black hole solution in dilaton-Maxwell
gravity is due to Chan, Mann and Horne [14]. The string metric is given by
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and M and Q are the mass and the charge of the black hole. The energy
distributions in the Landau and Lifshitz and Møller prescriptions are given by
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For r → ∞ in the Landau and Lifshitz prescription we obtain
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=  and in the case of the Møller prescription we have .ME →∞

We established a connection between the terms of the ratio of the energy
distributions in the Landau and Lifshitz and Møller prescriptions. This ratio is
given by
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From equation (5) we conclude that at the denominators of these coefficients
the power of γ coefficient increases with two units. At the numerators of this
relation the r coordinate, charge Q and mass M respect the law of connection
Qnrn – 1M–n that is available for all the terms. For r = 0 we obtain
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The ratio of the energy distributions can be written
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Plotting (6) with the ratio of the energy distributions on z-axis against Q
and M, we obtain the graph from the Fig. 1.

Fig. 1

The ratio of the energy distributions depends on the mass M, charge Q of
the black hole, γ parameter and r coordinate. In the case r = 0 the ratio of the
energy distributions depends on the mass M and charge Q of the black hole.

DISCUSSION

The important issue of energy localization still lacks of an acceptable
answer and continues to be one of the most interesting and challenging problem
of the General Relativity. We point out that this problem of defining in an
acceptable manner the energy-momentum density hasn't got a generally
accepted answer yet. The energy-momentum localization using several energy-
momentum complexes (ELLPW) and Møller has many adepts but there was,
also, much criticism related to the use of these prescriptions. The main lack of
these prescriptions is that most of these restrict one to calculate in quasi-
Cartesian coordinates. Only the Møller prescription enables one to make the
calculations in any coordinate system.

Many researchers considered different space-times and compute the energy
distribution using the energy-momentum complexes of Einstein, Landau and
Lifshitz, Papapetrou, Bergmann, Weinberg (ELLPW) and Møller and obtained
acceptable results. In many situations these prescriptions or some of them furnish
the same result for the energy distribution of a given space-time. In some cases
there were also obtained the same results for a given space-time using the
definition of these energy-momentum complexes in both General Relativity and
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tele-parallel gravity. Chang, Nester and Chen [11] showed that the energy-
momentum complexes are actually quasi-local and legitimate expressions for the
energy-momentum. Their idea supports the energy-momentum complexes and
the role which these are playing in energy-momentum localization. Furthermore,
important studies have been done about the new idea of quasi-local approach for
energy-momentum complexes [11, 15] and a large class of new pseudotensors
connected to the positivity in small regions have been constructed [15]. In this
light, the quasi-local quantities are associated with a closed 2-surface
(L. B. Szabados, [15] and http://relativity.livingreviews.org/ Articles/lrr-2004-4/).
The Hamiltonian boundary term determines the quasi-local quantities for finite
regions and the special quasi-local energy-momentum boundary term expressions
correspond each of them to a physically distinct and geometrically clear boundary
condition [16].

We model the connection between the energy distributions of a metric
which describes a recently derived non-asymptotically flat black hole solution in
dilaton-Maxwell gravity. Energy distributions are calculated with the Møller and
Landau and Lifshitz prescriptions.

We established a connection between the terms of the ratio of the energy
distributions in the Landau and Lifshitz and Møller prescriptions. The ratio of
the energy distributions depends on the charge Q, r coordinate and mass M of the
black hole and contain the quantity Qnrn – 1M–n and, also, a function ( )nf γ  which
depends on the γ parameter. The dependence on the γ parameter is described by

the quantity 2
1 ,

mγ
 where m = 0, 1, 2, … .

In a future work we intend to establish the connection between the energy
distributions of this metric in the case of Einstein, Landau and Lifshitz and
Møller prescriptions.
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