

QCL IMPLEMENTATION OF THE BERNSTEIN-VAZIRANI

ALGORITHM

BY

SIMONA ARUŞTEI* and VASILE MANTA*

Abstract. In this paper we present an implementation in the quantum
computer simulator QCL of the Bernstein-Vazirani algorithm. The analysis of this
algorithm is made using the formalism of quantum gates. This formalism allows the
decomposition of the computational process into elementary operations for an
adequate hardware. The control gate used in the description of the algorithm is
simulated by a set of 2-qubit CNot elementary quantum gates. We give an example
by considering the case of a 5-dimensional input register.

Key words: quantum computing, quantum gate, quantum algorithm

2000 Mathematics Subject Classification: 81P68, 68Q05

1. Introduction

At present, the processing and the communication of the information is

totally based on the phenomena of the classical physics. In the process of
building current computers the quantum effects are taken into consideration for
diminishing these effects and obtaining a certain macroscopic behaviour.
However, before the year 2020, miniaturization will reach subatomic scales, and
quantum phenomena will drastically affect the behaviour of semiconductors and
microchips.

The research in quantum informatics appeared as a consequence of Richard
Feynman’s suggestions, who in 1982 suggested that quantum phenomena can
be used in conceiving quantum computers. The application of the principles of
quantum physics in the computer area led to the concept of quantum computer,
in which the data aren’t stored in bits like in the conventional memory, but as a
combined state of several systems with 2-qubits states [2, 3]. According to the
principles of quantum physics the computing power of a quantum machine is

immense compared to the one of a classic computer because, unlike the classic
computers, in a quantum register all states can be accessed simultaneously (at
least theoretically) [2, 3, 7].

Feynman’s idea wasn’t immediately embraced because not even from the
theoretical point of view was it clear how such a quantum computer would
operate. The research in quantum informatics has suddenly gained immense
interest when in 1994 Peter Shor [9] invented an algorithm for a quantum
computing for solving the problem of the factorization of a whole number in
polynomial time (currently in classic informatics there are only algorithms with
exponential execution time for this problem). This algorithm was improved in
1999 by Richard Hughes from Los Alamos National Laboratory. The
importance of this algorithm is crucial because the main feature that most
security techniques (RSA system with public key) are based on, is the difficulty
of the factorization of a number using a polynomial algorithm.

Right after the presentation of the factorization algorithm new quantum
algorithms appeared: computing the logarithm of a natural number (Shor 1994),
another factorization algorithm (Jozsa 1997), mean calculus algorithms (Grover
1997), database search algorithm (Grover 1999), etc. [1, 4]. Despite all these,
currently there are few quantum algorithms with a time complexity smaller than
the classical case [3]. The known algorithms can be divided in three groups. The
first group is formed by the algorithms based on a common property of the
result values, for example the period of a function (Shor’s algorithm). The
second group contains algorithms for which a transformation of the state comes
with an increase of the probability of obtaining a certain result (amplification)
(Grover algorithm). The third class contains algorithms with characteristics of
both previous classes (the approximate counting algorithm).

2. Quantum Computation – Basic Concepts

Just like a classical computer, a quantum computer is built out of three main

parts: processor, memory and input/output. A quantum computer can be
formally described by ()βδ , T, O, H,=M , where H - represents the states

space (
n

C2 Hilbert space) of the quantum system, O- the set of unitary
transformations, T- the set of measurement commands, δ - is an initialization
operator and β - describes the final measurement.

The quantum analogous of the classical bit is the qubit. A qubit is a
quantum system whose states can be completely described by the superposition
of two orthonormal basis states, labelled 0 and 1 (in a Hilbert space

2CH = , ()T010 = , ()T101 =). Any state ψ can be described by:

(1) 10 βαψ += 1
22
=+ βα .

The orthonormal system { }1,0 is called computational basis. The

machine state ψ of an n -qubit quantum computer is an unit vector in Hilbert

space
n

C 2H = :

(2) ∑
−

− −=
01

01 01
dd

ndd

n

n
ddc

K

L Lψ , ∑ =
−

1
2

01 ddn
c K

The basis vectors 01 ddn K− can be interpreted as binary numbers and

relabelled as:

(3) ∑
−

=
=

1

0

2
n

i
i

i dk

A quantum register s is represented by a sequence of qubits. If s is an n -
qubit quantum register and U is an operator in the states space H , then the
operator)(sU applied to a register is called a quantum gate.

The Hadamard (H) and the NOT (X) gates are examples of quantum gates
that act on a single qubit:

(4)

−
=

11

11

2

1
H ,

=

01

10
X .

For the X gate we have: xxX →: . The Hadamard gate is useful

because applying it to either of the basis states 0 and 1 produces an equal

mixture of both of them:

(5))10(
2

1
0 +=H

and

(6))10(
2

1
1 −=H .

The most important 2-qubit gate is the CNOT (controlled-not gate) which

operates as:
1111

: yxxyxCNOT ⊕→ . The matrix form of this gate is:

(7)

=

0100

1000

0010

0001

CNOT .

CNOT is a generalization of the classical XOR gate, since its action may
be summarized as xyxyx ⊕→ ,, , where ⊕ is addition modulo two, which

is the same as XOR .
Generally, if U is a unitary m -qubit gate, a controlled U -gate with n

control qubits is defined as:

(8)

=

U

I

I

UC m

000

000

00

00

][
OM

L

.

We remark that all quantum gates are unitary operators.

3. Bernstein-Vazirani Algorithm

Let a be an unknown non-negative integer less than n2 . The binary
representation of a using n bits is 021 aaa nn L−− . Let)(xf be a Boolean

function { } { }1,01,0: →⊗n
f defined as

(9) 002211)(xaxaxaxaxf nnnn ⊕⊕⊕=⋅= −−−− L

The function f actually calculates the binary inner product of a and

another such number x . Suppose we have a subroutine that evaluates)(xf .

The Bernstein-Vazirani problem consists in determining all the bits of a with a
single invocation of the subroutine.

The m th bit of a is ma 2⋅ , since the binary expansion of m2 has 1 in
position m and 0 in all the other positions. On a classical computer the n bits

of a are determined applying f to the n values mx 2= , nm <≤0 . Thus, any

classical algorithm requires n calls of the subroutine that evaluates)(xf . On
the other hand, on a quantum computer, a single invocation is enough to
determine a completely, regardless of how big n is.

In the following we describe the algorithm using quantum gates (Hadamard
gate H , NOT gate X). We consider a n -qubit quantum register

n
x and a 1-

qubit quantum register
1

y . Analogous to Deutsch algorithm [2] the control

gate fU is built using function f :

(10) 11
)(: xfyxyxU

nnf ⊕→

The unitary operator fU acts on 1+n qubits and is also called an oracle

operator. The schematic representation of the unitary transformation fU for

evaluation of the function f is depicted in Fig. 1.

Fig.1 – The action of unitary transformation fU

The 1-qubit register is also called output register, while the n -qubit register

is called input register. The initial state of the quantum registers is

10 00
n

=ψ . The 1-qubit register is passed in the
1

1 state using the NOT

operator,
11

10 =X and then a superposition of states is acquired using the

Hadamard gate:

(11) ()
1111

10
2

1
10 −== HHX

fU applied to the computational basis states
1

yx
n

 flips the value y of

the output register if and only if 1)(=xf , and the resulted state is:

(12) ()=−=
111 10

2

1
nf xUψ ()

11
)(10

2

1
)1(−−

n

xf x .

Relation (12) uses the quantum parallelism of states, so, by taking the state
of the 1-qubit output register to

1
1H , we convert a bit flip to an overall

change of sign.
The action of H on a single qubit can be compactly summarized as:

(13) () ∑
=
−=−+=

1

0
1111

)1(
2

1
1)1(0

2

1

y

xyx yxH

The operator H , which acts on a single qubit, can be generalized on n
qubits like in the following [2]:

Uf

1
y

n
x

1
)(xfy ⊕

n
x

(14) ∑
−

=

⋅⊗ −=
12

0
2

)1(
2

1
n

y
n

yx

nn

n yxH

where the product yx ⋅ is defined as in (9). Because 1− is raised to the power

∑ ji yx , all that matters about that sum is its value modulo 2.

Thus, if the n -qubit input register is in the initial state
n

nH 0⊗ and the 1-

qubit register is passed in the state
1

1H , applying fU and then nH⊗ to the

input register, it results in:

(15)

() ()
()

11

12

0

)(
12

0

1

10
2

1
)1(

2

1

10

−−

=⊗⊗

∑∑
−

=

⋅+
−

=

⊗⊗

nn

y
n

yxxf

x
n

n

n
f

n

y

HHUH 1

The sum over x can be done first. The function)(xf being xa ⋅ , it
produces the factor:

(16) ∑∏∑
=

+

=

−

=

⋅⋅ −=−−
1

0

)(

1

12

0

)()()1()1()1(
j

jjj

n

x

xya
n

jx

xyxa .

If there is at least one bit jy of y different from the corresponding bit ja

of a , i.e. if ay ≠ , at least one term in the product from equation (16) vanishes.
Therefore the entire computational process (15) reduces to:

(17)
11

)1()1(110
nn

n
f

n aHUH =+⊗+⊗ .

where a final H is applied to the 1-qubit output register to make the resulting

expression look a little neater and more symmetric (using the fact that IH =2).
So by putting the input and output registers into the appropriate initial

states, after a single invocation of the subroutine followed by an application of
nH⊗ to the input register, the state of the input register becomes a . All n

bits of the number a can now be determined by measuring the input register,
even though we have called the subroutine only once.

Here we have to make the followings observations: A measurement is
described by a self-adjoint operator M , which has the spectral decomposition

∑=
m

mmPM , where mP is the projector onto the eigenspace of the eigenvalue

m . The eigenvalues m correspond to the possible outcomes of measurement.
Measuring ψ will give the result m with probability:

(18) ψψ mPmp =)(.

thereby reducing ψ to the post-measurement state:

(19) ψψ mP
mp)(

1
=′ .

So when the measurement is effected the system must find itself in a state of
the computational basis and not in a superposition of such states.

In Fig. 2 we present the circuit equivalent with relation (17) for the case
where 5=n and 1001119 ==a . The 5 -qubit input register in state

00000
5
≡ along with the output register in state

1
1 make up a register of

dimension 61=+n . The 6 -qubit Hadamard transform is applied to this
register, followed by fU and then another Hadamard transform on 6 -qubit.

The action of fU is reproduced by a set of CNot (controlled-not) gates.

Fig. 2 – The quantum circuit for Bernstein-Vazirani problem in the case 5=n

4. The QCL Implementation

The programming language QCL (Quantum Computation Language) is a

quantum simulator. It was conceived by Omer [5,6] and the first version

14 =a 0

03 =a 0

02 =a 0

11 =a 0

10 =a 0

 1

4a

3a

2a

1a

)(1 xf⊕

H

H

H

H

H

H

X X X

fU

H

H

H

H

H

H

0a

appeared in 1998 and the last one in 2004. It is open-source and it runs under
Linux operating system. QCL is a procedural high level language and has a C
like syntax. The main features are:

- a classical control language with functions, flow-control, interactive I/O
and various classical data types (int, real, complex, boolean, string);

- 2 quantum operator types: general unitarian (operator) and reversible
pseudo-classic gates (qufunct);

- inverse execution, allowing for on-the-fly determination of the inverse
operator though caching of operator calls;

- various quantum data types (qubit registers) for compile time information
on access modes (qureg, quconst, quvoid, quscratch);

- convenient functions to manipulate quantum registers (q[n] - qubit, q[n:m]
- substring, q&p - combined register;

- automatic scratch space management;
- universal language: can implement and simulate all known quantum

algorithms.
Below we list the implementation of relation (17) in QCL.

/* The Bernstein-Vazirani algorithm for a register x

with 5 qubits */

qureg x[5]; qureg y[1]; int m; int i;

int vector bitv[5];

for i=0 to #x-1 {

if random()>0.5 {bitv[i]=1;}

}

int a=0;

for i=0 to #x-1 {

 a = a + bitv[i]*2^i;

 }

print "Chosen value for a is", a;

/* here we pass y from state |0> to state |1> */

X(y);

/* now we concatenate the registers and apply the

Hadamard operator to all registers*/

H(x&y);

/* we apply the Uf operator (we simulate the action

of Uf with CNot gates)*/

 for i=0 to #x-1{

 if (bitv[i]>0){ CNot(y,x[i]);}

 }

/* we concatenate the registers and apply the

Hadamard operator to all registers*/

H(x&y);

// finally, we measure the register x

measure x, m;

print "Determined value of a is",m;

4. Conclusions

In this paper we have considered the Bernstein-Vazirani algorithm. The

analysis of this algorithm has been described from the software engineering
point of view using the formalism of quantum gates. Using this analysis the
final state was obtained exploring the effect of the Hadamard gates on the initial
state of the qubits and on the state subsequently produced by the action of fU .

For a particular case we have realized the quantum circuit for determination of
a value. Finally, we have developed an implementation of this algorithm using
the quantum language simulator QCL. The control gate fU used in the

description of the algorithm was simulated by a set of 2-qubits CNot elementary
quantum gates.

Submitted: *”Gh. Asachi” Technical University,

Accepted: Department of Computer Engineering

 Iaşi, Romania,

 e-mail:{sarustei, vmanta}@cs.tuiasi.ro

R E F E R E N C E S

1. C o l e J. H., H o l l e n b e r g L. C. L., P r a w e r S., An Algorithm for Simulating the Ising

Model on a Type-II Quantum Computer. Computer Physics Communications, 161(1-

2), 18-26, (2004).
2. M e r m i n D., Lectures Notes on Quantum Computer. Cornell University, Ithaca, New York,

2006.
3. N i e l s e n M., C h u a n g I., Quantum Computation and Quantum Information. Cambridge

University Press, Cambridge, UK, 2000.
4. N i s h i m u r a H., Y a m a k a m i T., Polynomial Time Quantum Computation with Advice.

Information Processing Letters, 90, 195-204, (2004).
5. O m e r B., Quantum Programming in QCL. Technical University of Vienna, Vienna, Austria,

2000.
6. O m e r B., Structured Quantum Programming in QCL. Technical University of Vienna,

Vienna, Austria, 2003.
7. P r e s k i l l J., Lectures Notes for Physics - Quantum Information and Computation. California

Institute of Technology, California, USA, 1998.
8. D e R a e d t H., M i c h i e l s e n K., Computational Methods for Simulating Quantum

Computers. arXiv:quant-ph/0406210, 2004.
9. S h o r P.W., Algorithms for quantum computation: Discrete logarithms and factoring. Proc.

35th Annual Symposium on Foundations of Computer Science, Los Alamitos, CA,
USA, November, 20-22, 1994, pp. 124-134.

IMPLEMENTARE QCL A LGORITMULUI BERNSTEIN-VAZIRANI

(Rezumat)

 În această lucrare este prezentată implementarea algoritmului Bernstein-Vazirani în

simulatorul de calcule cuantice, QCL. Analiza algoritmului a fost realizată pe baza formalismului
porŃilor cuantice. Acest formalism permite descompunerea procesului de calcul în operaŃii
elementare pentru un hardware adecvat. Poarta de control utilizata în descrierea algoritmului este
simulată prin intermediul unui set de porŃi cuantice elementare CNot pe 2 qubiŃi. Se exemplifică
aplicarea algoritmului considerând cazul unui registru de intrare pe 5 qubiŃi şi se prezintă circuitul
cuantic echivalent procesului de calcul.

