M\m

Using the same conditions (15), removing the mixed derivative, from Maxwell equations (12
—13) can be read the system of equation

2 2 NP
TAA 2,4-28 el an
F

ot ror 1 b

2 A2 N
o4, +2__6A4 ] =2ea)‘ o (18)
ot ror of r

The equation (18) admits a particular oscillating non-trivial solution of the form (Fig.1):

alr.d)=tnr| 2662 (19)

In| Lz—
)

The equation (19) admits in the same manner, a particular non-trivial solution of the form:

A4(r,t) =In(r {Zew‘NIz + bex;{—%1 lnt(zr )]] (20)

Considering these first order solutions, could be evaluated the electric charge density, which
has the expression

2
p=ezN“ar\:Zea)ln(r)eZ\l2 —ebexp[—l ! }In(r)+(o:\ 21)
r\in(r)
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Abstract. It is possible to consider space-time symmetries (for example Poincaré or de Sitter) as
purely inner symmetries. A formulation of the de Sitter symmetry as purely inner symmetry
defined on a fixed Minkowski space-time is presented. We define the generators of the de Sitter
group and write the equations of structure using a constant deformation parameter A. Local
gauge transformations and corresponding covariant derivative depending on gauge fields are
obtained. The method of generalized zeta-function is used to realize the renormalization. An
effective integral of action is obtained and a comparison with other results is given.

Keywords: De Sitter pure inner symmetry, hyperbolic fluctuation operator, zeta-function
PACS: 11.10.Gh; 11.10.Ef; 11.15.-q

INTRODUCTION

Most of the existing gauge theories of gravitation adopt a geometrical description of
gravity. Namely, the Poincaré group is considered partly as a space-time partly as an
internal symmetry group. The local extension of its space-time part becomes then the
diffeomorphism group and the gauge theory is invariant under general coordinate
transformations and local Lorentz frame rotations. Therefore, this local symmetry
_ group is connected with the geometry of the space-time.

) It is possible also to consider space-time symmetries (for example Poincaré or de
Sitter in this paper) as purely inner symmetries [1, 2, 3]. This leads to a description of
. !he gauge theory of gravitation which is in a complete analogy with the description of
. inner symmetries as groups of generalized “rotations” in field space.

In this paper we consider the group de Sitter (DS) as purely inner symmetry and
develop a gauge theory of gravitation. We obtain an effective integral of action which
automatically includes the cosmological constant. The method of generalized zeta-
+ function is used to study the renormalization of the theory.
In .Section 2 we introduce the DS gauge group and give in an explicitly form its
°q\la'tlon of structures. The gauge covariant derivative is introduced as usually,
considering the DS group as an internal symmetry and introducing the corresponding
gauge fields. The strength field is defined as the commutator of two gauge covariant
- derivatives,

The renormalizability of the theory is studied in Section 3, using the method of

generalized zeta function. The change of the partition function with respect to scale
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transform is calculated for the case of a spinor Dirac field interacting with the
gravitational field described by the gauge potentials. Then, a minimal field gauge
action, compatible with renormalizability requirements and including the cosmological
constant, is determined.

Finally, some concluding remarks are given in the Section 4. It is emphasized that
in our model there is no any direct interrelation between gravity and the structure of
space-time. At quantum level it may conceptually be easier to deal with a field
theoretical description of gravitation free of any geometrical aspects.

DE SITTER GAUGE THEORY

We consider a gauge theory of gravitation having de Sitter (DS) group as local
symmetry. Let X,, 4=12,...,10 be a basis of DS Lie algebra with the corresponding
equations of structure given by [2]

[XA’XB]:ifABCX(?9 1)
where f ABC are the constants of structure whose form are given bellow in Eq. (3).

In order to write the constant of structures £, in a compact form, we use the
following notations for the index A:

| a =0,1,2,3 ’
=) -l ) @

This means that 4 can stand for a single index like 2 as well as for a pair of indices
like [01], [12], etc. The infinitesimal generators X, are interpreted as: X, =P,

(energy-momentum operators) and Xi, =M (angular momentum operators) with

the property M, = —M,,. The constants of structure f, ABC in (1) have the expressions:
Lt = fa” = el =0

e —ap(sres-506,)

a a 1 a a 5 3
) fb[cd] = Jleals = E(ﬂbcad ~ 40 ) 5 ®
[efl 1 ( egc [ ec [ eof e _[)
.fiab][cd] = Z ﬂbcéa 6d - nacsb 541 + nadab 6( - ﬂbdaa §c —e<> f

where A is a real parameter, and 77,, = diag(1,~1,-1, —1) is the Minkowski metric of
the space-time. In fact, here we have a deformation of the de Sitter Lie algebra having
) as parameter. Considering the contraction A—>0 we obtain the Poincaré Lie
algebra, i.e., the group DS contracts to the Poincaré group.

Now we introduce the local DS gauge transformation and the corresponding gauge
covariant derivative V,, considering DS as an internal group of symmetry. As usually

in any gauge theory, we have
V,=0,+B,, “
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together with the following decomposition of B, with respect to the infinitesimal
generators F, and M,
1

Bzz =_iBab-Pb+EBabc.MbC' (5)
The corresponding generators of the DS group in the field space have the form:
})a =iaa +1‘Ka’ Mab :i(xaab —xbaa)+%zab’ (6)

where K, are the “translation” de Sitter generators and I, the spin angular momentum

operators. The last one (Z,,) satisfy commutation relations of the same form as
M, and K, have the expression [3]:

K, = i(277abxbx” —0'25”")66,

We also can decompose B, with respect to &,and X, as follows:

o’ = nabx"xb. (@)

B, =[B! + 18, nxcx - 076, o, + iBa’”z,,c. ®)
Introducing (8) into Eq. (4) and denoting
o) =5"+B anxxt — 6%, )+ B x., ©)
we obtain
V,=¢/8,+ iBﬂ’”z,,c. (10)

Because in our model the coordinate and DS gauge transformations are strictly
separated, we emphasize that the introduction of Bab ,Babc and eab gauge fields has no
implications on the structure of the underlying space-time, which is assumed to be
(M,,n) endowed with the Minkowski metric 77.

Abbreviating

da :eabab’ Ba :i.Babczbc’ (11)

where T, must be considered into the Lorentz group representation it acts on, we can
write the gauge covariant derivative (10) under the simple form:
V,=d,+B,. (12)
The derivative d, can be just considered as a translation gauge covariant derivative
[4). In order to obtain the tensor (field strength operator) F,, of the gauge fields, we
introduce the non-covariant decomposition

ld,.d,]=H,d.. (13)
The quantity H,, is expressed in terms of e, as:
o, =8 (e,,"a,,eb"' - e,,”’ade,,”), (14)

where 2, is the matrix inverse ofe,”, i.e. g,’e."= 8,". Using the definition of the field
strength operator in a gauge theory, we have:
F,-[v,V,]=H,d - (B, ~B,)d. +d,B,~d,B,+[B,.B). (15
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If we introduce the tensor

T;bc =BabC—anc_Habcv (16)

then we can rewrite F,, as ‘
F, =T 4 iR“’abzcd, a7

where R“a has the expression
Rs=d,B -d,B +B*B, -B“B, ~H, B (18)
In what follows we will use the shorthand notation
i €

R, = ZR A . 19)

As F,, in (17) has decomposition with respect to V, and Z_, it acts in general not

only as a matrix but also as a first order differential operator in field space. But, if we
suppose that

Habc = Babl‘ _Bbac’ (20)

that is we take T,,° =0, then we can write Eq. (15) under the form:
F,= %Rcdabza, =R, @1)

We can verify that 7,," and R transform homogeneous under infinitesimal local

DS gauge transformations. Then, as a consequence, the choice T,," =0 is indeed a
gauge covariant statement as an implicitly assumed above.

RENORMALIZATION

In order to analyze the renormalization of our DS gauge theory, we will consider
first the globally DS invariant action for a Dirac spinor field (matter field):

8p = Id“XBW“(a,,'//) - %(5.,117 )r'y —m 'W} (22)

Then, if we want to obtain a gauge (local) invariant action, we have to change the
usual derivative 0, in (22) by the gauge covariant derivative defined in Eq. (12):

and to use the new volume elementd‘xe™, wheree™ = det(éab). Then, partially
integrating V , in the second term of (23), we obtain the form of the Dirac action:

Sp= Jd's e"v{iw(va —%T,,a”)—m}w, @4

The assumption that the interaction of the DS gauge fields with the matter fields (in
our case with the Dirac field) is renormalizable, imposes strong conditions on the
classical gauge field dynamics. Namely, we know that the change of the partition
function of the whole system under rescaling can be absorbed in its classical action

(Vy)r"w—mw} (23)
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yielding at most a nontrivial scale dependence of the different couplings, masses and
wave function normalizations. As a consequence, the change of one-loop matter
partition under rescaling will allow us to constrain the classical gauge field dynaml‘cs.
The contribution of the Dirac field to the partition function is given by the following
functional integral [5]:

z,(e.B)= [DF Dy *°7+ . 25)
Then, we may perform a formal Grassmann integral in (25) and obtain:
llndet Mw [e,B)
Z,(e,B)=¢? , (26)
where .
M, (e,B)=-D,D" + %Ra,,z“’ —m. @7

Here, M, (e,B) is named hyperbolic fluctuation operator and its expression in (27)
is obtain as usually [5] by squaring the Dirac operator introduced in Eq. (24). For the
case T,,° =0 we consider here, the operator D, in Eq. (27) is given by the formula:

D, =V, +B,. (28)

The gauge field (Lie algebra valued) shall only act on the spinor indices and the
covariant derivative V, only on vector indices.

The contribution to the partition function normalized at scale 4 is given by [6]:

Le(o i, (e.8))

ZW(,u;e,B)=e 2 5 29
where ¢ (s; mM, (e,B)) is the generalized zeta function of parameter s associated to
the hyperbolic fluctuation operator M, (e,B) and ¢ ’(0;,u;MV, (e,B)) is the derivative

of the generalized zeta function with respect to s taken fors =0.
We just remember the fact that zeta function is given by

((O;y;MW(e,B))=—(#)2 Id“x det e tre,(x) (30)
and the coefficient function ¢, (x) for the Dirac field in the case T = 0 has the form
tre,(x)= %VC”R"”@ + %Ra;’” ‘RS- ?Z_OR"”“‘ R - on
cf 1 ab 4
—%Rac « R +§m2 “R® . +2m".

We consider now a new scale fi=Auand determine the corresponding change
ofZ, (y; e, B). To end this, we use the very well known property 6]
(0, :M, (e, B))= (015 M, (¢, B))+ 2In 2 ¢0;mM,(e,B). (32
Then, we obtain:
2z, (fse,B)=Z, (e, B)-¢ 0o ), (33)

Finally, we have to evaluate the zeta function yielding the rescaling change in terms
of the DS gauge fields and then to determine a minimal field gauge action compatible

59



with renormalizability requirements. Renormalizability of any theory, including
dynamical gauge fields, requires that these contributions to the partition function like

(33) be expressed as local DS gauge invariant polynomials in the fields eab and Babc.

In our case, under the constraint T, =0, we obtain as minimal classical action for the
auge fields [7]:

gauge fields
— 1 a Ci
S,(e,B)= [d*xe ‘(~ T (R-2A)+0aR* + R, R, + JRGMR“”“’) (34)

Here, G is the gravitational constant anda, p, y are the coupling constants. We
can see that the DS gauge group automatically enforces a cosmological constant which
in our model is equal toA = —124%, where Ais the deformation parameter of the de
Sitter Lie algebra. We emphasize that S, in (34) is an action for gauge fields defined

on the Minkowski space-time (M4,77) and is invariant on one hand under local DS
gauge transformations, on the other hand under global Poincaré symmetry reflecting
the symmetry of the underlying space-time.

CONCLUSIONS

Based on the hypothesis that DS is a purely inner symmetry we have developed a
gauge theory of gravitation with the constant cosmological automatically included.
When the deformation parameter 1 — 0, we obtain the Poincaré gauge theory on the
Minkowski space-time which do not include the cosmological constant. The
gravitational interaction is mediated by gauge fields defined on a fixed Minkowski
space-time. Their dynamics has been determined imposing consistency requirements
with renormalization properties of matter fields in the gravitational backgrounds. In
our model there is no any direct interrelation between gravity and the structure of
space-time. At quantum level it may conceptually be easier to deal with a field
theoretical description of gravitation free of any geometrical aspects.
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Abstract. In the last decades, much attention has been paid to the excitation on coherent states,
especially for coherent states of the harmonic oscillator ([1] and references therein). But an
interesting anharmonic oscillator with many potential applications is also the pseudoharmonic
oscillator (PHO). So, in the present paper we have defined the excitation on the Klauder-
Perelomov coherent states (E-KP-CSs) for the PHO. These states are obtained by repeatedly
operating the raising operator K, on a usual Klauder-Perelomov coherent state (KP-CS) of the
PHO [2]. We have verified that really, the E-KP-CSs fulfill all the properties of the coherent
states, as stated by Klauder [3]. We have examined the nonclassical properties of the E-KP-CSs,
by usin% the density matrix formalism and examining the dependence of the Mandel parameter
Q.xm(2”) on the |z> and on the m. It seems that these states can be used in optical
communication field and in the physics of quantum information, as signal beams, due to the fact
that in these fields the nonclassicality plays an important role.

Keywords: coherent states, pseudoharmonic oscillator, density matrix.
PACS: 03.65 w, 03.65 Db, 34.20 cf.

PSEUDOHARMONIC OSCILLATOR (PHO)

The pseudoharmonic oscillator (PHO) [4, 5] is an anharmonic potential, which, like
the harmonic oscillator (HO) potential, also allows an exact mathematical treatment.
This potential may be considered in a certain sense as an intermediate oscillator
between the HO and more anharmonic oscillators, e. g. Morse oscillator (MO),
Poschl-Teller oscillator (PTO) (which are more realistic).

The effective potential of PHO [2] is:

2 2 2
mao 20 ¥ T mao 2 2
V,(r)= ol ——=L| + r—r 1
) =% ,(FJ rJ ) 8
where m is the reduced mass, o is the angular frequency and ry is the equilibrium

distance between the diatomic molecule nuclei. The appearing constants are defined as
1

2h i [ 1y b
v, =|— az——) ; a=||J+=| + Mr(f
mao 4 2 2%

where J =0,1,2,... is the rotational quantum number. When Eq. (1) is compared with

the HO potential: V,,, = %mwz(" ~n) @)
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