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A gauge theory describing simultaneously different interactions between
internal SU(2) gauge and gravitational fields is formulated, choosing the group
SU(2) SO(4,1) as a local symmetry. Both internal and external (space-time) symme-
tries are considered. All the fields are described by gauge potentials. A solution of
Schwarzschild-Reissner-Nordström-de-Sitter type is obtained first in the commu-
tative space-time. We suppose then that the space-time is noncommutative. The
corrections for tetrad fields and metric components are calculated up to the second
order in the noncommutativity parameter. The solutions reduce to the deformed
Reissner-Nordström or Schwarzschild ones when the cosmological constant and
respectively the electric charge of the gravitational source vanish.

1. INTRODUCTION

The gauge theory of gravitation has been considered by many authors in
order to describe the gravity in a similar way with other interactions
(electromagnetic, weak or strong) [1]. Some authors consider the Poincaré
(inhomogeneous Lorentz) group ISO(3,1) or de-Sitter SO(4,1) group as “active”
symmetry groups, i.e. acting on the space-time coordinates [2]. Others adopt the
“passive” point of view when the space-time coordinates are not affected by
group transformations [3, 4]. Only the fields change under the action of the
symmetry group.

Although the Poincaré gauge theory leads to a satisfactory classical theory
of gravity, the analogy with gauge theories of internal symmetries is not a
satisfactory one because of the specific treatment of translations [5]. It is
possible, however, to formulate the gauge theory of gravity in a way that treats
the whole ISO(3,1) in a more unified framework. The approach is based on the
SO(4,1) group and the Lorentz and translation parts are distinguished through a
mechanism of spontaneous symmetry breaking [6]. An immediate consequence
of replacing ISO(3,1) by the SO(4,1) group as the symmetry underlying the
Universe is the appearance of a non-vanishing cosmological constant , which is
determined by a real parameter  of deformation. When we consider the limit

 0, i.e. the group contraction process, the de-Sitter group SO(4,1) reduces to
the Poincaré group ISO(3,1), and the corresponding gravitation theory can not
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describe the cosmological constant [7]. The matter fields are described by an
action that is invariant under the global SO(4,1) symmetry and the gravity is
introduced as a gauge field in the process of localization of this symmetry.

On the other hands, many recent investigations are oriented towards a
formulation of general relativity on noncommutative space-times [18, 19]. In
[18], for example, a deformation of Einstein’s gravity was studied by gauging
the noncommutative SO(4,1) de-Sitter group and using the Seiberg-Witten map
[17] with subsequent contraction to the Poincaré group ISO(3,1). In [19, 20] the
gravitational gauge potentials for the Schwarzschild and respectively Reissner-
Nordström-de-Sitter metrics are calculated.

In this paper, we develop an unified model of the gravitation with other
interactions by considering the group SU(2) SO(4,1) as gauge symmetry. By
contraction to the ISO(3,1) group we can obtain the Poincaré gauge gravity. We
obtain first a solution in the commutative case for the gauge potentials and
construct a metric of Reissner-Nordström-de-Sitter type. Then, using the
Seiberg-Witten map, we calculate the noncommutativity corrections for the
gravitational gauge potentials and for the corresponding metric components.

2. THE  GAUGE  THEORY

The de-Sitter group SO(4,1) has the dimension equal to ten and the SU(2)
group is non-abelian, three-dimensional. The infinitesimal generators of the
SO(4,1) group are denoted by Mab, a, b = 0, 1, 2, 3, 4, 5, and those of SU(2)
group by T ,  = 1, 2, 3. The equations of structure have the form [4, 6]:

ab cd bc ad ac bd bd ac ad bcM M M M M M (2.1a)

T T T (2.1b)

0abM T (2.1c)

where 1 1 1 1 1ab  is the five-dimensional Lorentz metric. A matter

field x  is always referred to a local frame L of the Minkowski space-time. In
general, it is a multicomponent object which can be represented as a
vector-column. The action of the global de-Sitter group, in the tangent space,
transforms an L frame into another L frame and determine an appropriate
transformation of the field x  [4]:

11
2

ab
abx x (2.2)

Here ab  are the spin matrices related to the multicomponent structure of x
and they satisfy the same equations of structure (2.1a) as Mab.
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We define now the gauge covariant derivative, associated to the local group
of symmetry SU(2) SO(4,1):

1
2

ab
abx A A T x (2.3)

where abA x baA x  are the gauge potentials describing the gravitational

field and A x  are the internal gauge potentials associated to the group SU(2).

Now, we calculate the commutator  in order to obtain the expressions

of the strength tensors. We have:

1{ ( )
2

}

ab ab a cb a cb
c c abx A A A A A A

A A A A T x
(2.4)

If we use the general definition

1
2

ab
abx F G T x (2.5)

and identify the Eqs. (2.4) and (2.5), we obtain:

ab ab ab a cb a cb
c cF A A A A A A (2.6)

G A A A A (2.7)

Choosing 5a i  5b j  5c m  with 0 1 2 3i j m , and denoting
5 2i iA e , then the Eq. (2.6) becomes:

24ij ij ij i sj i sj i j i j
s sF A A A A A A e e e e (2.8)

.i i i i s i s
s sF e e A e A e (2.9)

In a Riemann-Cartan model the quantities iF  are interpreted as the components

of the torsion tensor, and ijF  as the components of the curvature tensor asso-

ciated to the gravitational field whose gauge potentials are ie x  and ijA x .

3. MODEL  WITH SPHERICAL  SYMMETRY

We consider now a particular form of spherically gauge fields of the
SU(2) SO(4,1) group given by the following ansatz:
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0 1 2 30 0 0 0 0 0 0 0 0 0 0 0 sine A e B e rC e rC (3.1)

and
01 12 130 0 0 0 0 0 0 0 0 sinA U A W A Z (3.2a)

23 02 030 0 0 cos 0 3A V A (3.2b)

where A, B, C, U, V, Z and W are functions only of the three-dimensional radius
r. In addition, the spherically symmetric SU(2) gauge fields will be parametrized
as (Witten ansatz):

3 2 1 3sin cosA uT dt w T d T d T d (3.3)

where u and w are functions also depending only on r.
We use the above expressions to compute the components of the tensors

iF  and ijF . Their’s non-null components are:

0 2
1210F A UB F C rC WB (3.3a)

3 3
13 23sin cos 1F C rC ZB F rC V (3.3b)

and respectively:

01 2 02 2
10 204 ( 4 )F U AB F UW rAC (3.4a)

03 2 21 2
2130 sin 4 4F UZ rAC F W rBC (3.4b)

31 2 32
31 314 sin cosF Z rBC F V (3.4c)

31 23 2 2 2
32 32cos 4 sinF Z VW F V ZW r C (3.4d)

where , ,A C U V W  and Z  denotes the derivatives with respect to the
variable r. Analogously, we obtain the following non-null components of the
SU(2) stress tensor :G

1 1 2
02 13 03sin sinG uw G w G uw (3.5a)

2 3 3 2
12 01 23 1 sinG w G u G w (3.5b)

with duu
dr

 and .dww
dr

The integral action of our model is:

4
2

1 1( 2 ) ( )
16 4EYMS d xe F Tr G G

G Kg
(3.6)
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where ij
i jF F e e , det ie e  and G G T , G G T . We choose

Tr T T K ; for SU(2) group we have 1
2a aT  ( a being the Pauli

matrices) and then 1 .
2

K  The gravitational constant G is the only dimensional
quantity in action (the units = c = 1 are understood) and g is the SU(2)
coupling constant. Taking 0EYMS  with respect to A ie  and ijA  we
obtain respectively the following field equations [9]:

1 0eG A G
e

(3.7)

1 2 8
2

i i iF F e GT (3.8)

where iT  is the energy-momentum tensor of the SU(2) gauge fields

2
1 1

4
i i iT G G e G G

Kg
(3.9)

and
0iF (3.10)

In Eq. (3.9) we denoted i ijG .jGe  The Eq. (3.10) is equivalent with

the vanishing of the torsion in a Riemann-Cartan theory and determine the gauge
potentials ijA  as function of tetrad fields e  Then, introducing (3.4) and (3.5)

into these field equations and imposing the constraints 1C , 1A N
B

 with

N(r) a new unknown positive defined function, we obtain:

2 2

2

1w w u wNw
Nr

(3.11a)

2
2 2uwr u

N
(3.11b)

2 2 2

2 0w u w
r rN

(3.11c)

222 2 2 2 2
2

2

11 21 0
2 2 32

wr u u w rrN N Nw
N r

(3.11d)

where we used 1
2

K  and 2
4 1G
g

 units. These equations admit the following

solution of Schwarzschild-Reissner-Nordstrom-de-Sitter type with a nontrivial
gauge field describing colored black holes [15]:
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2
2

0 2
20 1

3
Q Qmu r u w r N r r
r r r

(3.12a)

where 212  is the cosmological constant of the model. They admit also the
self-dual solution (Schwarzschild):

20 1 1 mu r w r N r
r

(3.12b)

But, the solution (3.12a) is not a self-dual one.

4. NONCOMMUTATIVITY  CORRECTIONS

We suppose now that the space-time is noncommutative, i.e. its coordinates
x r t  satisfy the (canonical) commutation relations [16]:

x x i (4.1)

where  are constant parameters. It is known that the noncom-
mutativity field theory on such a space-time requires the introduction of the star
“*” product between the fields defined on this space-time:

2 .
i

x x e x (4.2)

In order to calculate the effect of the noncommutativity on the gauge fields
we use the Seiberg-Witten map [17]. This map gives the deformed (noncom-
mutative) gauge fields as a series of parameter ,  containing the commutative
gauge fields and their derivatives. For simplicity we will consider only the
space-space commutatitvity and choose:

0 0 0

0 0 0

0 0 0 0

0 0 0 0

(4.3)

where  is a constant parameter of deformation. Proceeding along the approach
of [18], we will obtain a deformed Reissner-Nordström-de-Sitter solution in
noncommutative gauge theory of gravitation.

In our case of SU(2) SO(4,1) gauge symmetry, the noncommutative tetrad
fields ˆie  up to the second order in parameter  are given by

2 4
1 2 3
1 2

1 1 5 5ˆ
8 12 312

rA re A O
A AA
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2 3
1 212

re i O
A

2
1 3
2ˆ 2

4 3
i re A rA O

A

2 2
2

1 11ˆ (7 12 12
32 3

re r AA rA rAA (4.4)

2 2 3
2 35 5 )

3 9
r AA r O

3 2
3

2 2 3
2 3

2 2

1ˆ sin cos (2 2
4 8

4 2 11 ) sin
3 123

i Ae r rA rAA AA
A

r r A r r O
AA A

0 3 2 2 2
0

2 2 2 2 2 32

1ˆ (2 5 2
8

)
6 3 3 4

e A rA rAA A rA A AA A A

r r A r A ArA O
A A

where ,A A A are the first, second and third derivatives of A(r), respectively,

with A N  and N given by (3.12a).

Using the hermitian conjugate ˆie x  of the deformed tetrad fields

given in (4.4), we can define a real deformed metric by formula [19]:

1ˆ ˆ ˆ ˆ ˆ
2

j ii j
ijg x e e e e (4.5)

where ij = diag(1, 1, 1, –1), i, j = 1, 2, 3, 0. The non-null components of this
metric are:

12
2

11 2

3 2 2 2 2 2 4
2

2 2 2 4
3

2 46 52 8

42
2 2 2 4

3

2ˆ 1
3

( 2 3 3 6 2 )
16 ( 2 )

73 11
3 4 4 3

16 ( 2 )

Qmg r
r r

mr m r Q r mQ r Q
r r mr Q r

Q rr mrr

O
r r mr Q r

4 3 2 2 2 2 2 4
2 2

22 2 2 2 4 2
3

( 17 34 27 75 30 )ˆ
4 ( 2 )

r mr m r Q r mQ r Q
g r r

r r mr Q r
(4.6)
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2 42 8 6 5

2 4
2 2 2 4 2

3

4656 38 24
3 3 3

4 ( 2 )

Q rr r m r
O

r r mr Q r

2 4 3 2 2 2 2 2 4
2 2

33 2 2 2 4

3 2 2 2 2 2 4
2

2 2 2 4

3 2 6 42 2 2

42
2 2 2 4

3

cos ( 2 7 4 16 8 )ˆ sin
16 ( 2 )

3
( 2 4 2 )

14 ( 2 )
3

14 25 7sin
3 9 3

16 ( 2 )

r mr Q r m r mQ r Q
g r

r r mr Q r

mr m r Q r mQ r Q

r r mr Q r

m r r rQ r
O

r r mr Q r

2 3 2 2 2 2 2 4
2 2

00 2 6

4 2 2
42

2

4 9 11 30 142ˆ 1
3 4

6 25 9 9

144

Q mr Q r m r mQ r Qmg r
r r r

mr r r Q
O

r

It is important to remark that for  0 we obtain from (4.6) the
noncommutativity corrections for the Reisner-Nordström metric, and for  0
and simultaneously Q  0, we obtain the corrections to the Schwarzschild
metric [19].

If we consider that the source of the gravitational field is a black hole, then
we can calculate the noncommutativity corrections to the horizon radius,
temperature and entropy [20].

The deformed SU(2) gauge fields up to the first order in  are given
by [21]:

1ˆ .
4

A A A A G A (4.7)

In this case we have to use the enveloping algebra of SU(2) which coincides with

the Lie algebra of U(2) group. Then the gauge potentials are ,A B A

where B  is a new gauge fields introduced by enveloping algebra. For simplicity,
we chose B  = (1/2, 0, 0, 0) as a constant field.

Introducing (3.3) in (4.7), we obtain the following corrections for SU(2)
gauge fields, up to the first order in parameter :

1 2
3

1ˆ sin
4

A w u w O
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1 2
0

1ˆ
4

A u w O

2 2
1

1ˆ
2

A w O

2 2
2Â w O (4.8)

3 2 2
3

1ˆ cos 2 sin
4

A w O

3 2
0Â u O

In particular, if we use the solution (3.12a), then we have only two non-null
components:

3 2
3

1ˆ cos sin
2

A O (4.9)

3 2
00

ˆ Q
A u O

r

More general case of SU(n) group can be studied in a similar way.
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