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A model of gauge theory with U(2) as local symmetry group is developed over
a noncommutative space-time. The integral of the action is written considering a
gauge field coupled with a Higgs multiplet. The gauge fields are calculated up to the
first order in the noncommutativity parameter using the equations of motion and
Seiberg-Witten map. The solutions are determined supposing that in zero-th order
they have a general relativistic analog form. The Wu-Yang ansatz for the gauge fields
is used to solve the field equations. Some comments on the quantization of the
electrical and magnetical charges are also given, with a comparison between
commutative and noncommutative cases.

1. INTRODUCTION

Noncommutative (NC) gauge theories have been intensively studied during
the past years, prompted by the results of Seiberg and Witten’s seminal paper
[1], connecting commutative and NC fields. Recent results [2–4] show that NC
space-time might be endowed with a deformed symmetry structure. It has been
established in a series of papers [5–7] that the Seiberg-Witten (SW) results can
be obtained in an entirely independent way of string theory. The corresponding
method uses only algebraic properties of the canonical NC space-time via
properties of the  – product between functions defined on this space.

In Ref. [8], a BPS monopole (Bogomolnyi, Prasad, Sommerfield [17, 18])
solution was considered at the first order in the NC parameter θμν, and the
extension of the results up to second order is given in Ref. [9]. The analysis
using the NC eigenvalue equation for scalar field successfully reproduced the
D-string picture. Study of NC monopoles using SW method was carried out in
Refs. [10–13]. There, the solutions were transformed in the commutative
description via SW map. More recently [14], an explicit classical dyon solution
for NC version of the Yang-Mills-Higgs (YMH) model was studied using BPS
equation.

Finding solutions for Yang-Mills (YM) theories is usually difficult because
the field equations are non-linear. However, gauge theories and general relativity



1220 G. Zet 2

share some mathematical similarities, and this connection can be used to find
solutions to one theory knowing solutions of the other theory and reciprocal
[15]. In our paper we extend these results to the NC case, considering U(2) as
gauge group. In section 2, we obtain the general relativistic analog solutions for
the commutative U(2) gauge theory coupled with a Higgs multiplet in adjoint
representation. The field equations are written and their solutions are obtained.
Besides BPS monopole, we consider the Schwarzschild and de-Sitter dyon
solutions. The “electromagnetic” features of these solutions are investigated by
using ’t Hooft’s definition of the generalized, gauge invariant, U(1) field strength
tensor [16].

Section 3 is devoted to the NC U(2) gauge theory. Our analysis is based on
field equations and SW map. For the monopole solution one considers also the
BPS equation and the NC field components are obtained by expanding them in
powers of θ. The NC general relativistic analog solutions are obtained both for
monopole and dyon solution and the Witten effect [14, 25] is investigated. We
show that the relation between classical electric and magnetic charges also holds
in NC space-time. Some possible extensions of these results are also suggested.

2. GAUGE  FIELDS  ON  COMMUTATIVE  SPACE-TIME

We will consider first the commutative U(2) gauge theory coupled to a
Higgs multiplet Φ(x) in adjoint representation. The action for this Yang-Mills
Higgs (YMH) system is [9, 14]

( )4 1
2

S tr d x F F D Dμν μ
μν μ= − + Φ Φ . (2.1)

Gauge fields ( ) ( ) ,A
AA x A x Tμ μ= μ = 1, 2, 3, 0 take values in the Lie algebra of

U(2), with generators TA, A = 0, 1, 2, 3 defined as

0
1 1 1 2 3
2 2a aT I T a= , = σ , = , , , (2.2)

where I is the 2 × 2 unity matrix and σa are the Pauli matrices. Analogous,

( ) ( )A
Ax x TΦ = Φ  is the Higgs multiplet whose components transform under the

adjoint representation of the U(2) group. Therefore, the components ( )0 0AμΦ ,

correspond to U(1) sector, and ( )a aAμΦ ,  – to SU(2) sector. Note that the group

SU(2) is not allowed here since the algebra of any special unitary group is not
closed when multiplication is defined by the ∗ -product. In such cases we have to
work with the associative Hopf algebras. The gauge theory is defined over the
Minkowski space-time endowed with the metric
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2 2 2 2 2ds dx dy dz dt= + + − . (2.3)

whose components are ( )1 1 1 1 .diagμνη = , , , −
Gauge covariant derivative and field strength tensor of the gauge fields are

defined as follows

D g Aμ μ μΦ = ∂ Φ + , Φ , (2.4)

and respectively

F A A g A Aμν μ ν ν μ μ ν= ∂ = ∂ + , , (2.5)

where g is the gauge coupling constant.
The general equations of motion for YMH system are

( )A A A C B C
BCF f F A Dν ν

μν μν μ∂ = − Φ Φ , (2.6)

( )A A B C
BCD gf D Aμ μ

μ μ∂ Φ = Φ , (2.7)

where A A
BC CBf f= −  are the U(2) constants of structure and AFμν  are the

components of the strength tensor A
AF F Tμν μν=  with values in the Lie algebra. In

order to obtain the solutions of the equations (2.6)–(2.7) we adopt the case with
vanishing fields of U(1) sector, i.e. 0 0Φ = , 0 0Aμ = .  Also, we consider the

generalized Wu-Yang ansatz [15]

( ) ( )

( )

( )

2 2

0 2

2

1 1 2 3j a ia
i aij ia

aa

aa

x G rx x
A K r i j

grgr r

x
A J r

gr

x
H r

gr

= ε − + − δ , , = , , ,

= ,

Φ = ,

(2.8)

where K(r), G(r), J(r), and H(r) are the ansatz functions to be determined by the
equations of motion. Also, the constants of structure a

bcf  of the SU(2) group

have been identified with the components of the complete antisymmetric tensor
εabc, with ε123 = +1. Introducing the expressions (2.8) in (2.6)–(2.7), we obtain
the following set of coupled, non-linear YMH field equations

( )2 2 2 2 2 1r K K K G H J′′ = + + − − ,
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( )
( )
( )

2 2 2 2 2

2 2 2

2 2 2

1

2

2

r G G K G H J

r J J K G

r H H K G

′′ = + + − − ,

′′ = + ,

′′ = + ,

(2.9)

where ,K ′′  ,G′′ J ′′  and H ′′  denote differentiation with respect to r.
One of the most important solution to the equations (2.9) is

( ) ( ) ( ) ( ) ( ) ( )cos csc sin cscK r r h r G r r h r= α , = α ,

( ) ( ) ( ) ( ) ( ) ( )sinh 1 coth cosh 1 cothJ r r r H r r r= β − , = β − , (2.10)

where α and β are arbitrary constants. It was discovered by Bogomolnyi [17]
and independently by Prasad and Sommerfield [18], being named BPS solution.
This solution satisfies, besides the YM field equations (2.9), the BPS-equation

1 0
2i ijk jkD FΦ + ε = . (2.11)

It is important remark that not any solution of the YM field equations (2.9)
verifies also the BPS equation (2.11).

In order to simplify the above results, we will consider now the case of
monopole solutions, i.e. we suppose ( ) ( ) 0J r G r= = ,  and introduce the
notations

( ) ( ) ( ) ( )1 K r H r
W r F r

gr gr
−

= , = . (2.12)

Then, the ansatz (2.8) becomes

( ) ( )j aa a
i aij

x x
A W r F r

gr gr
= ε , Φ = , (2.13)

and the BPS-equation (2.11) implies

( ) ( )2 2( 2 ) 2 0r F W F W r W W F′ ′− + − + − = . (2.14)

It is easy to show that the solution (2.10) verifies this equation, while our general
relativistic solutions [see (2.16) and (2.18)] do not. This means that the last ones
are monopole but not BPS solutions.

The non-linear nature of the YM field equations makes finding solutions
difficult. However, because the general relativity is also a non-Abelian gauge
theory [19–21], there is a mathematical connection between the two theories. As
a consequence, it is possible to find solutions to the field equations of the gauge
theory starting from those of the general relativity. We will give now some
general relativistic analog solutions for YMH system.
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We begin by examining the Schwarzschild solution of general relativity
which has two non-trivial components to the metric tensor

1

11 2
00

1 21 GMg
g c r

−
= − = − . (2.15)

Trying this form of g11 in the equations (2.9) one immediately finds the
following solution

( ) ( ) ( ) ( )

2 2

cos sin
2 21 1

K r G r
GM GM
c r c r

α α
= , = ,

− −

( ) ( ) ( ) ( )

2 2

sinh cosh2 2
2 21 1

GM GMJ r H r
r GM r GM

c r c r

β β
= − , = − ,

− −
(2.16)

where α and β are arbitrary constants.
A second example of general relativistic analog solutions for YMH system

is that including a non-zero cosmological constant Λ. The time-time component
of the metric tensor is [22]

2
00 2

21
3

GMg r
c r

Λ= − − ,

where Λ is the cosmological constant. The Newtonian potential corresponding to
this solution has the expression [15]

( ) 00 2
2

1 2
2 3

g GMr r
c r

− Λϕ = = − − . (2.17)

Using this potential as a starting point one finds the following analog de-
Sitter solution

( ) ( ) ( ) ( ) ( ) ( ) 2cos sin AK r G r J r H r Br
r

= α , = α , = = + , (2.18)

where α, A and B are arbitrary constants.
All these solutions (2.10), (2.16) and (2.18) to the YM field equations have

interesting “electromagnetic” features. To investigate these properties we will
use ’t Hooft’s definition of generalized, gauge invariant, U(1) field strength
tensor [16]

( ) ( ) ( ) ( )1a a a a a b c
abcF A A

gμν μ ν ν μ μ ν= ∂ ϕ − ∂ ϕ − ε ϕ ∂ ϕ ∂ ϕ , (2.19)

where ( ) 1 2
.a a b b − /

ϕ = Φ Φ Φ  This field strength tensor reduces to the usual

expression if one performs a gauge transformation to the Abelian gauge
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( )3a a rϕ = δ ϕ  [23]. If one associate this U(1) with the photon of
electromagnetism, then the above mentioned solutions carry electric and/or
magnetic charges. In general, the electric and magnetic fields associated with
these solutions are [16]

( )
0

i
i i

J rx dE F
gr dr r

= = ,

3
1
2

i
i ijk jk

x
B F

gr
= ε = − . (2.20)

If we chose J(r) = 0, i.e. 0 0aA =  (see (2.8)), then the electric field vanishes
and the corresponding solutions (2.10), (2.16) and (2.18) describe a point-like

monopole (BPS, Schwarzschild or de-Sitter) of strength 4 .mq
g
π= −  In the case

when ( ) 0,J r ≠  these solution describe a dyon [14] carrying both electric and
magnetic charges. We remark that gauge theories coupled to Higgs fields exhibit
a remarkable phenomenon, usually called Witten effect [25], related to the
ϑ-angle. Indeed, suppose we add under the integral (2.1) a ϑ-term

( )2

232
eL tr F Fμνρσ

μν ρσΔ = ϑ ε .
π

(2.21)

Then, denoting the electric and magnetic charges by qe and respectively qm,
it can be shown that [14, 24]

2

28e m
eq ne qϑ= + .
π

(2.22)

Identifying the coupling constant g with the electron charge – e (as in U(1)
gauge theory), it results

( )2eq n eϑ= + .π (2.23)

This result is known as Witten effect [25] which shows that the electric
charge qe of a dyon is modified by the ϑ-term. We will show that, for NC dyons of
Schwarzschild and de-Sitter type, the same formula holds as in ordinary space.

3. NONCOMMUTATIVE  GAUGE  THEORY

The NC structure of the space-time is determined by the (canonical)
commutation relation

x x iμ ν μν, = θ , (3.1)



7 Yang-Mills theory on noncommutative space-time 1225

where νμμνθ = −θ  is an antisymmetric constant matrix. It is well known [22]
that NC field theory is constructed by introducing the star product “ ” between
the functions ( )f x  and ( )g x  defined over the space-time

( )( ) ( ) ( )2
i

f g x f x e g x
μν

μ νθ ∂ ∂= . (3.2)

Then, the action of the U(2)-YMH system considered in Section 2 extends
to the NC form

( )4 1 ˆ ˆ ˆ ˆ
2NCS tr d x F F D Dμν μ

μν μ= − + Φ Φ . (3.3)

The covariant derivative and field strength tensor are defined in the
following NC forms

ˆ ˆ ˆ ˆD g Aμ μ μΦ = ∂ Φ + , Φ , (3.4)

ˆ ˆ ˆ ˆ ˆF A A g A Aμν μ ν ν μ μ ν= ∂ − ∂ + , , (3.5)

where we have denoted

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆA x B x A x B x B x A x, = − .

The NC general relativistic analog solutions can be obtained by expanding
the fields ˆ

iA  and Φ̂  in powers of θ

( ) ( ) ( )( ) ( ) ( )( )0 1 2 0 1 0 2
0

ˆ ˆ ˆ ˆ ˆ ˆa a a
i ai i i i iA A A A T A A T= + + + + + + , (3.6)

( ) ( ) ( )( ) ( ) ( )( )0 1 2 0 1 0 2
0

ˆ ˆ ˆ ˆ ˆ ˆa a a
aT TΦ = Φ + Φ + Φ + + Φ + Φ + , (3.7)

where the superscript (n) denotes the order of θ. As the solutions at O(θ0) order,
we adopt the monopole solutions with vanishing U(1) components

( ) ( )0 0 0 0ˆ ˆ 0iA = Φ =  and the SU(2) components given in (2.13). The NC dyon
solutions can be obtained on an analogous way. In addition, we take only space-
space noncommutativity, 0 0iθ =  (due to the known problem with unitarity) and
choose the coordinate system so that the parameters θμν are given as

0 0 0

0 0 0
1 2 3 0

0 0 0 0

0 0 0 0

μν

θ
−θ

θ = , μ, ν = , , , . (3.8)
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The BPS NC monopole solution has been obtained by solving order by
order the BPS equation [12–14]

1ˆ ˆ 0
2

jk
i ijkD FΦ + ε = . (3.9)

The only non-zero component at the first order O(θ) is

( ) ( ) ( )0 1 0 1
2

1ˆ ˆ2 0
4

j
ijiA x W W F

r
= θ + , Φ = . (3.10)

The BPS monopole solution at the O(θ2) order are given in Appendix. Because
our general relativistic analog solutions do not satisfy the BPS equation, we will
use the field equations and SW map [1] as an alternative way.

The main idea of the SW map is to expand the NC fields in terms of
commutative fields in such a way that the gauge transformations λ̂δ  and δλ are

compatible, i.e.

( ) ( ) ( )ˆ
ˆ ˆ ˆA A A A A A Aμ μ μ λλ+ δ = + δ ,

where

[ ] ˆ
ˆ ˆ ˆˆ ˆ A A

A AA A A A T Tλ λ ∗
δ = λ, , δ = λ, , λ = λ , λ = λ .

This map is derived from the requirement of gauge equivalence of the two
descriptions. Using this condition, one obtain up to the first order in θ [1, 26, 27]

( )21ˆ { }
4

A A A A F Oνρ
μ μ ν ρ μ ρμ= − θ , ∂ + + θ , (3.11)

( ) ( )21ˆ { }
4

A D Oμν
μ ν ν νΦ = Φ − θ , ∂ + ∂ Φ + θ , (3.12)

where the Higgs multiplet Φ transforms under the adjoint representation of U(2)
group.

Choosing the fields at the O(θ0) order as in (2.13), we obtain from (3.11)–
(3.12) the following non-zero components at the first order in θ

( ) ( )0 1
2

1ˆ 2
4

j
ijiA x W W rW

r
′= θ + , (3.13)

( ) ( )0 1
2

1ˆ 2
4

ijk
ij kx WF rW

r
Φ = −θ ε − (3.14)

Note that the NC fields in U(1) sector have non-zero components at the O(θ)
order, although their components in the zeroth order vanish. We remark also that
the results obtained by SW map method differ from those deduced by using BPS
equation. This is due to the fact that the NC gauge fields obtained by SW map
are solutions of the field equations but not for BPS equation.
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In order to analyze the Noether charge of our solutions, we consider the NC
version of the action (3.3) including an additional ϑ-term

2
4

2
1
2 16NC

eS tr d x F F D D F Fμν μ μν
μν μ μν= − + Φ Φ + ϑ .

π
(3.15)

The use of the equations of motion allows to explicitly find the component
J0 of the current Jμ of the gauge fields [14]

2
0 0 0

2
1 2

4
i i

i i
eJ tr F D F D

e
ϑ= − Φ − Φ .

π
(3.16)

Then, the conserved charge of the general relativistic analog dyon is

2
3 0 3 0

2
1 2

8
i ijk

i jk i
eN d xJ tr d x F D F D

e
ϑ= = − Φ − ε Φ ,

π
(3.17)

or after integration

2
1

8
eN Q M

e
ϑ= − + .
π

(3.18)

Here, Q and M are the NC electric and respectively magnetic charges of the
dyon, defined as [14]

32 i iQ tr d xE D= Φ, (3.19)

32 i iM tr d xB D= Φ. (3.19)

Supposing that the charge N is quantized in integer units n, we obtain from
(3.18)

2

28e m
eq ne qϑ= + .
π

(3.26)

This is, we obtained for NC general relativistic analog dyon the same
formula that holds for the case of ordinary space, i.e. the equation (2.22).

In summary, we have constructed explicit noncommutative monopole and
dyon solution starting from the general relativistic analog results. We showed
that noncommutative fields in U(1) sector have non-zero components at the first
order in parameter θ although in zeroth order they are vanishing. Moreover, after
extending the Noether approach to the case of noncommutative gauge theory, we
have proven that the noncommutativity of space-time [relation (3.1)] do not
change the Witten effect. We found that the dyon’s charge shift is independent
on the parameters θμν of noncommutativity. It should be interesting to
investigate the general relativistic analog monopole and dyon solutions for the
case when ( )xμν μνθ = θ  because this coordinate dependence may introduce
definite changes in the charge shift due to noncommutativity of space-time.
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