
Objective 1.  Formulation of the general gauge theory with ),()( qpSOnSU × as   

structural    group 

 

1.1. Obtaining the structure equations of the gauge group 
 
The SO(p, q) group has the dimension equal to m( m-1)/2 where m = p + q, and the 

SU(n) group is non-abelian, having the dimension 12 −n . The infinitesimal generators of 

the SO(p, q) group are denoted by mbaM ab ,...,3,2,1,, =  and those of SU(n) group by 

1,...,3,2,1α, 2
α −= nT . Generally, ababab LM Σ+= , where abL  are the angular momentum 

operators and abΣ  denotes the spin operators in the considered representation. The 

equations of structure have the form [2, 7]: 

  [ ] bcadacbdbdacadbccdab MMMMMM ηηηη, +−−= ,  (1.1a) 

  [ ] γ
γ

αββα , TfTT = ,       (1.1b) 

  [ ] 0, α =TM ab ,        (1.1c) 

where 

  













−−−=

43421321
qp

diag 1,...,1,1,1,...,1,1ηab  

is the m-dimensional Lorentz metric, and γ
βα

γ
αβ ff −=  are the structure constants of the 

group ( )nSU . In the particular case of the group ( )2SU  the structure constants coincides 

with the total anti-symmetric tensor αβγε  having the property 1123 +=ε . The equation 

(1.1c) shows that the group ),()( qpSOnSU ×  has a direct product structure. In order to 

describe the gravitational field we will choose ( )4,1SO  as gauge group whose dimension 

is 5=+= qpm . Therefore, we have 5,3,2,1,0== ba , or denoting 3,2,1,0=== kji  we 

can write 5,ia =  etc. 

 

1.2. Definition of the gauge invariant derivative 
 

We define now the gauge covariant derivative, associated to the local group of symmetry 

SU(n)×SO(p, q) [2]: 

 ( ) ( )xTAgA
g

x ab
ab Φ







 ′′+Σ
′

+∂=Φ∇ α
α
µµµµ

2
,    (1.2) 

where ( ) ( )xAxA baab
µµ −=  are the ( )qpSO ,  gauge potentials describing the gravitational 

field, and ( )xAα
µ  are the internal gauge potentials associated to the group SU(n). The 

quantities g ′  and g ′′ denote the coupling constants of the gravitational and respectively 

internal SU(n) gauge fields. In the particular case of the group ( ) ( )4,12 SOSU ×  the 

potentials ( )xAα
µ  correspond to the isospin states and ( )xAab

µ  decompose in two parts: the 

spin connection ( ) ( ) 3,2,1,0,, == jixAx ijij

µµω  and the tetrads ( ) ( )xAxe ii 5

µµ = . 

 



1.3. Obtaining the general expressions of the tensors associated to 

gauge   potentials 
 

In order to determine the tensors associated to gauge potentials ( )xAα
µ  and 

( )xAab

µ , we calculate the commutator [ ]νµ ,∇∇ . Using the equations of structure (1.1), we 

obtain [7]: 
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If we use the general definition 
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and identify the Eqs. (1.3) and (1.4), then we obtain 

  ( )cba
c

cba
c

ababab AAAAgAAF µννµµννµµν −′+∂−∂= ,   (1.5) 

  γ

ν

β

ν

α

µν

α

νµµν AAfgAAGa α
βγ′′+∂−∂= .     (1.6) 

In particular, if we consider the case of SU(2) ×SO(1, 4), chose 5,;5,;5, kcjbia ===  

with 3,2,1,0,, =kji  and denote i
µ

5
µ λe2=iA , then the Eq. (1.5) becomes [10] 

 ( ) ( )jijikji
k

kji
k

ijijij eeeegAAAAgAAF µννµ
2

µννµµνµµν λ4 −′−−′+∂−∂= ,  (1.7) 
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iii eAeAgeeF µννµµννµµν −′+∂−∂= .     (1.8) 

In a Riemann-Cartan model the quantities iFµν  are interpreted as the components of the 

torsion tensor iTµν , and ijFµν  as the components of the curvature tensor ijRµν  of the space-

time. 
 

Objective 2: Obtaining the field equations for the gauge potentials 
             

          2.1. Construction of the action integral for the gauge potentials 
 

The potentials ( ) ( )xexA iij

µµ ,  describe the gravitational field and ( )xAα
µ  - the internal 

properties (isospin, hypercharge, etc) of the considered physical system. The tetrads 

( )xeiµ  can be used to define a metric tensor 

  ji

ij eeg νµµν η= ,        (2.1) 

where ( )1.1,1,1 −= diagijη  is the Lorentz metric. The gauge potentials allow to define the 

integral of the action of the considered model. It contains two terms, one corresponding 

to the sector SO(p, q) and the other to the ( )nSU  sector: 
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In this expression we used the definitions 



  ( )i
µ

νµ
µν det, eeeeFF ji
ij == ,      (2.3) 

where ( )xei
µ  denotes the inverse of ( )xeiµ , i.e. 
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From now on we choose ( ) αββα δKTTTr =  and αα σ
2

1
=T , where ασ  denotes the Pauli 

matrices. 
2

1
=K . The gravitational constant G in (2.2) is the only dimensional quantity in 

action, because we will use the units 1== ch . 

 

2.2. Obtaining the field equations by the variational method 

 

We impose the condition 0δ =EYMS  (the variational principle) with respect to iAA µ
α
µ ,  

and ijAµ . Then we obtain respectively the following field equations: 

  ( ) 0ε
1 γµνβ

µ
αβγαµν

µ =+∂ GAeG
e

,     (2.5) 

  iii GTFeF µµµ π8
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=− ,       (2.6) 

where iTµ  is the energy-momentum tensor [3, 7] of the gauge fields ( )xAα
µ  
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and respectively 

    0µν =iF .      (2.8) 

In the case of the group ( ) ( )4,12 SOSU ×  the equations (2.5) determine the isospin states, 

those from (2.6) correspond to the Einstein equations, and (2.8) shows that we have a 

space without torsion. They are known as Einstein-Yang-Mills equations (EYM). By 

integrating the equations EYM we obtain the gauge potentials as solutions. 

 

 2.3 Formulation of the self-duality conditions 
  

We can obtain easier solutions of the field equations if we impose the self-duality 

condition for the tensor of the gauge fields. To do that we define the dual tensors 

   αρσ
µορσ

α
µν ε GgG −=

2

1~
,     (2.9) 

   ρσ
µορσµν ε abab FgF −=

2
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where ( )µνgg det= , µνρσε  is the total anti-symmetric Levi-Civita tensor ( 10123 +=ε ) and 

   abab FggFGggG τλ
σλρτρσα

τλ
σλρταρσ == , .   (2.11) 

Then, the self-duality condition is given by the relations 

   iGiG µν
α
µν =

~
,    abab FiF µνµν =

~
.     (2.12) 



These are equations of the first order in contrast with the equations EYM which are of 

second order and the obtaining of their solutions is easier. Any solution of the self-duality 

equations (2.12) is also a solution of the EYM equations but reverse is not true. 

 

Objective 3: Applications to the spherically symmetric case 

 

      3.1. Obtaining spherically symmetric solutions  

 

For the spherically symmetric case, the Minkowski space-time is endowed with the 

metric 

  ( ) 2222222 sin dtddrdrds −++= ϕθθ .    (3.1) 

We present now three examples of solutions of the previous field equations. 

 

1) Solution with cosmological constant 

 

We consider, as an example, the particular form of spherically gauge fields of the 

SO(1,4) group given by the following ansatz: 

 ( ) ( ) ( ) ( )θsin,0,0,0,0,,0,0,0,0,,0,0,0,0, 3
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µ rCerCeBeAe ==== , (3.2) 

and 

 
( ) ( ) ( )
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where A, B, C, U, V, Z and W are functions only of the three-dimensional radius r. In 

addition, the spherically symmetric SU(2) gauge fields will be parametrized as: 

 ( ) ϕϕ dTdTddtuTA θcosθsinT-θw 313 ++= ,    (3.4) 

where u and w  are functions also depending only of variable r. Then, imposing the 

constraints 1,
1

=== CN
B

A  where N(r) is a new unknown positive defined function, 

we obtain: 
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 units. These equations admit the following solution 

(Schwarzschild-Reissner-Nordstrom-de-Sitter) with a nontrivial gauge field describing 

colored black holes [4, 5, 6]: 



 ( ) ( ) ( ) ,
3

12
1,0w, 2

2

2

0 r
r

Q

r

m
rNr

r

Q
uru

Λ
−

+
+−==+=   (3.6) 

where 2λ12−=Λ  is the cosmological constant of the model. The equations (3.5) admit 
also the self-dual solution (Schwarzschild): 

  ( ) ( ) ( ) ,
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But, the solution (3.6) is not a self-dual one. 

Making a contraction 0λ → of the SO(1, 4) group, we obtain the Poincaré gauge 

theory coupled with the isospin group SU(2). The solutions of the field equations are 

given by (3.6) and (3.7) where 0=Λ . Therefore, the Poincaré gauge theory do not 

allows a cosmological constant. 

 

2) Model with the quantum gauge group ( )2SUG×  

 

The gauge gravitational group G has the generators 0,3,2,1, =∂−= ααα iP  considered as 

differential operators which commutes [12]: 

  [ ] 0, =βα PP .        (3.8) 

The generators of ( )2SU  are denoted by 3,2,1, =aTa  and they satisfy of the form given 

in (1.1b). The internal and gravitational gauge fields with values in the Lie algebra are: 
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a == , .     (3.9) 

We choose the spherically symmetric gauge fields in the form [1]: 
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where ( ) ( )rVrU ,  are functions depending only of r and g is the gravitational coupling 

constant. Then, the corresponding field equations are [1] 

  ( )( ) 02221 =′′−′−′′−′+′′− UVgrUgVUgrVVVrgU ,  (3.11) 

  ( ) 02_12 2 =−−′ gUUgUUgr .     (3.12) 

The general solution of the equation (3.12) is [1] 
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where a is an arbitrary constant of integration. Choosing a = - 2Gm, the solution (3.13)gives the 

Schwarzschild metric [1]: 
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Then, we obtain from (3.11) two corresponding solutions for ( )2SU  gauge potentials: 
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These results show that there are only gravitational couplings into the considered model but no 

( )2SU  internal couplings because the solution we obtained do not contains the ( )2SU  coupling 

constant.  

 The model presented here allows the quantization of the gravitational field by using path 

integral method [10] on the same way as for internal gauge theories. Because the gauge group G 
is considered here as a pure internal symmetry, the property of renormalization is assured for our 

unified gauge model [1, 10]. 
 

3) Solutions for gauge fields on non-commutative space-time 
 

We suppose now that the space-time is non-commutative with the coordinates ( )trx ,θ,,µ ϕ=  

satisfying the following commutation relations: 

   [ ] µννµ , Θ= ixx ,      (3.16) 

where 
νµµν Θ−=Θ  are constant parameters. We will consider the space-space non-

commutativity [2] when the only non-vanishing components are Θ=Θ−=Θ 2112
, where Θ is a 

constant parameter of deformation. To describe different gauge fields we use the star product ""∗  
defined by relation [2, 3]: 
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 Let us suppose now that the gauge group is ( ) ( )4,12 SOSU ×  and denote the gauge fields 

(potentials) by ( ) ( )xexA ia
µµ ˆ,ˆ . We define the metric of the non-commutative space-time as 
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Then,using the Witten-Seiberg map [2, 3, 13], we obtain the following corrections [2, 3]: 

- for the internal ( )2SU  gauge fields (with the commutative solution (3.7)): 
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- for the Schwarzschild metric  
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where Gm2α = . These solutions can be used to the determination of some quantum 

characteristics of the black holes such as temperature, entropy, etc. 
 



 3.2. Establishing conditions non-singular solutions of the field equations 
 

We construct now an integral of the action of the gauge fields ( )xe iµ  under the form [2, 14]: 

 ( ) ( ) ( ) ( ) ( )[ ]∫ +++−= 211222111
4 ,

π16
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ϕϕϕϕ VIftIftFxd

G
S g ,  (3.21) 

where 1I  and 2I are two invariants of theory, and ( )t1ϕ , ( )t2ϕ  are Lagrange multipliers 

introduced in order to assure the existence of nonsingular solutions. The potentials ( )21,ϕϕV  

satisfy the conditions: 
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A possible form of the functions ( )11 If  and ( )22 If  is [14]: 

 ( ) 111 IIf = ,  ( ) 222 IIf −= ,   ( ) 212µ
µ1 43 FFFFI i
i −−= ,   

2µ
µ2 4 FFFI i
i −= . (3.23) 

If we know the metric of the space-time, we can determine then the functions ( )11 If , ( )22 If  and 

the potential ( )21 ,ϕϕV . 

 

3.3. Construction of a non-singular solution 
 
We consider the case of the Robertson-Walker metric  

( ) ( ) ( )( )θ,-1sin,, 222222
µν tartartadiagg =  

and suppose that ( ) 01 =tϕ . We denote ( ) ( )tt ϕϕ =2  and respectively ( ) ( )ϕϕ VV =2,0 . Then, 

imposing the variational principle 0δSg =  with respect to ( )ta  and ( ) ( )tt ϕϕ =2 , we obtain the 

following conditions which assure the existence of non-singular solutions: 

  ( )
H

H
t

a

a
H

222
2 λ3

,λ2
ϕ

ϕϕ
−

=′−=
′








 ′
≡′ .    (3.24) 

where λ  is the deformation parameter of the Lie algebra [see eq. (1.8)]. These equations admit 

the periodic solution: 

  ( ) ( ) ( ) ( )[ ]1ωcos
32

ω
,ωsin 0

0 −== ttHtt
ϕ

ϕϕ ,    (3.25) 

where 0ϕ  is an integration constant and λ32ω 41×=  is the frequency of the gravitational field 

described by the gauge fields ( )xe iµ  and ( )xAab
µν . This solution has no singularities and is 

associated with a negative cosmological constant 0λ12 2 <−=Λ . The case when this constant 

is positive can be studied analogous by using the anti-de-Sitter group ( )3,2SO . 

 It is possible to obtain and other solutions without singularities supposing that the 
cosmological “constant” itself has a dependence of time. Using the method described in this 
section we can obtain non-singular solutions for case of gauge theories with internal groups of 

symmetry. 
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