Objective 1. Formulation of the general gauge theory with SU(n)xSO(p,q)as
structural group

1.1. Obtaining the structure equations of the gauge group

The SO(p, q) group has the dimension equal to m( m-1)/2 where m = p + ¢, and the
SU(n) group is non-abelian, having the dimension n* —1. The infinitesimal generators of
the SO(p, q) group are denoted by M ,,a,b=123,...,m and those of SU(n) group by
T,,0= 1,2,3,..,n% —1. Generally, M, =L, +X

operators and X, denotes the spin operators in the considered representation. The

where L, are the angular momentum

a ab >

equations of structure have the form [2, 7]:

[Mab:Mcd]z NoeM sa =MaeM pg =MpaM 4o +MNogM e (1.1a)
.1 )=rat,, (1.1b)
[M,.T,]=0, (I.1¢)
where
Ny = diag| L1, —1—1,...,~1
7

is the m-dimensional Lorentz metric, and [, =—f;, are the structure constants of the

group SU (n) In the particular case of the group SU (2) the structure constants coincides
with the total anti-symmetric tensor ¢&,, having the property &,, =+1. The equation
(1.1c) shows that the group SU(n)x SO(p,q) has a direct product structure. In order to
describe the gravitational field we will choose S0(1,4) as gauge group whose dimension
is m= p+q=5. Therefore, we have a =b=0,1,2,3,5, or denoting i= j =k =0,1,2,3 we
can write a =1i,5 etc.

1.2. Definition of the gauge invariant derivative
We define now the gauge covariant derivative, associated to the local group of symmetry
SU(n)xSO(p, q) [2]:
g v
V,®(x)= [‘% + 7AHbzab +g"AT, j(l)(x), (1.2)

where A:l’b (x)= —Afl“ (x) are the SO(p,q) gauge potentials describing the gravitational
field, and AS (x) are the internal gauge potentials associated to the group SU(n). The

quantities g' and g" denote the coupling constants of the gravitational and respectively
internal SU(n) gauge fields. In the particular case of the group SU (2)>< SO(1,4) the

potentials A:‘ (x) correspond to the isospin states and Ajb (x) decompose in two parts: the

spin connection @ (x)=4/(x),i, j=0,1,2,3 and the tetrads ¢! (x)= 4" (x).



1.3. Obtaining the general expressions of the tensors associated to
gauge potentials

In order to determine the tensors associated to gauge potentials A (x) and

Ay (x), we calculate the commutator [V wVy J Using the equations of structure (1.1), we
obtain [7]:

7,9 Jolo) = £ -0 v gl - o

(1.3)
+ (0,45 —0,4% + g"f A AT )T, ().
If we use the general definition
ViV Jolx)= (% FaT o +8'GLT, ]@(x), (1.4)
and identify the Egs. (1.3) and (1.4), then we obtain
F=0,4% 4% + /(4% 4% — 42 4), (1.5)
G, =0,A4; —0, 4! + g'f; AL A! . (1.6)

In particular, if we consider the case of SU(2) xSO(1, 4), chose a =i,5;b=j,5;¢c=k,5
with i, j,k = 0,1,2,3 and denote A;S = ZKeL , then the Eq. (1.5) becomes [10]

Fl=0,47 0,47 + g'(4] 49 — 4i 49 )-a02g'(ele) —eie] ), (1.7)
Fi, =0 —0,e +g'(dl et — 4l e). (1.8)

In a Riemann-Cartan model the quantities FJV are interpreted as the components of the

torsion tensor 7| :V , and Ffv as the components of the curvature tensor R:{V of the space-

time.
Objective 2: Obtaining the field equations for the gauge potentials

2.1. Construction of the action integral for the gauge potentials

The potentials A (x), e, (x) describe the gravitational field and Ay (x) - the internal

properties (isospin, hypercharge, etc) of the considered physical system. The tetrads
e, (x) can be used to define a metric tensor

8 = ryij.e;ej , (2.1)
where 7, = diag(l,l,l.—l) is the Lorentz metric. The gauge potentials allow to define the

integral of the action of the considered model. It contains two terms, one corresponding
to the sector SO(p, q) and the other to the SU (n) sector:
1 1

S, =[d*xe| - F - Tr\T. T, )G G | 2.2
EYM _[ 161G 4Kg,2 ( o Bpw ( )

In this expression we used the definitions



F=Fighe!, e=detle!), 2.3)

pvi p
where &/ (x) denotes the inverse of e, (x), i.e.

=5 (2.4)

i=v _ Qv
ee =0,

1 .
From now on we choose T r(TaT ﬁ)= Kd,5 and T, = EG“ , where o, denotes the Pauli

matrices. K = 5 The gravitational constant G in (2.2) is the only dimensional quantity in

action, because we will use the units z=c=1.

2.2. Obtaining the field equations by the variational method

We impose the condition 3Syy,, =0 (the variational principle) with respect to 4/, A:l

and Ag . Then we obtain respectively the following field equations:

é@u(eG‘W )+ abgm =0, (2.5)
F, —%Feg = 8nGT, (2.6)

where T, Pf is the energy-momentum tensor [3, 7] of the gauge fields 4, (x)

i 1 i 1 i A
T, = P (— G:j‘mep +ZeH &Gg j, 2.7)

and respectively
F, =0. (2.8)
In the case of the group SU (2)>< SO(1,4) the equations (2.5) determine the isospin states,

those from (2.6) correspond to the Einstein equations, and (2.8) shows that we have a
space without torsion. They are known as Einstein-Yang-Mills equations (EYM). By
integrating the equations EYM we obtain the gauge potentials as solutions.

2.3 Formulation of the self-duality conditions

We can obtain easier solutions of the field equations if we impose the self-duality
condition for the tensor of the gauge fields. To do that we define the dual tensors

~a 1 apo
G, =5,/—g ope G v (2.9)

~a 1 abpo
Fﬂfza ~ & Erope 7. (2.10)

where g = det(g v ), € .o 18 the total anti-symmetric Levi-Civita tensor (&,,,; =+1) and

HVpo
Gapo’ — gpz'go%G;’ Fabpa — gpz‘go%]_;;ib ) (21 1)
Then, the self-duality condition is given by the relations

Ge, =iG,,, FY=iF?. (2.12)

Hv v



These are equations of the first order in contrast with the equations EYM which are of
second order and the obtaining of their solutions is easier. Any solution of the self-duality
equations (2.12) is also a solution of the EYM equations but reverse is not true.

Objective 3: Applications to the spherically symmetric case
3.1. Obtaining spherically symmetric solutions

For the spherically symmetric case, the Minkowski space-time is endowed with the
metric

ds* = dr* +1*(d6* +sin* 0dg® )—dr*. G.1)
We present now three examples of solutions of the previous field equations.

1) Solution with cosmological constant

We consider, as an example, the particular form of spherically gauge fields of the
SO(1,4) group given by the following ansatz:

el =(4,0,00), e}, =(0,8,00), e =(0,0,7C,0), e =(0,0,0,/Csin0), (3.2)
and
4 =(U,0,00). 47 =(0,0,w,0), 4. =(0,0,0,Zsin0)

AP =(0,0,0,V cosb), 4% = 4% =(0,0,0,0)

where 4, B, C, U, V, Z and W are functions only of the three-dimensional radius r. In
addition, the spherically symmetric SU(2) gauge fields will be parametrized as:
A=uT,dt + w(Td0 - T, sin0d @)+ T; cosbd g, (3.4)

where # and w are functions also depending only of variable . Then, imposing the

(3.3)

constraints 4 = % =JN , C =1 where N(r) is a new unknown positive defined function,

we obtain:
, 2 2
(Nw') _ w(w —1)_u w’
r? N
(u) = e (3.5)
w?  ulw? L
r rN* ’
212 2.2 2 2
l(rN’+N—1)+ru LA YSVE I il 21+AL:O,
2 2r 2
1 4nG . : . . .
where we used K =— and —— =1 units. These equations admit the following solution
g

(Schwarzschild-Reissner-Nordstrom-de-Sitter) with a nontrivial gauge field describing
colored black holes [4, 5, 6]:



2
u(r):u0+g, W(r):0, N(r)zl—z—m+Q 2+1—Ar2, (3.6)
r r r 3
where A =—12)7 is the cosmological constant of the model. The equations (3.5) admit
also the self-dual solution (Schwarzschild):

u(r)=0, w(r)==%1, N(r)= ———?r , 3.7

But, the solution (3.6) is not a self-dual one.

Making a contraction A — 0of the SO(1, 4) group, we obtain the Poincaré gauge
theory coupled with the isospin group SU(2). The solutions of the field equations are
given by (3.6) and (3.7) where A =0. Therefore, the Poincaré gauge theory do not
allows a cosmological constant.

2) Model with the quantum gauge group GxSU (2)

The gauge gravitational group G has the generators P, =—i0,, o =1,2,3,0 considered as
differential operators which commutes [12]:

|2, P,]=0. (3.8)
The generators of SU (2) are denoted by 7, a=1,2,3 and they satisfy of the form given
in (1.1b). The internal and gravitational gauge fields with values in the Lie algebra are:

4,(x)= 4T, C,(x)=C:(x)P,. (3.9)
We choose the spherically symmetric gauge fields in the form [1]:
[ Yo P e . L Ul Sy S & B RER T

rg rgsing ’ [_l—gU(r)
where U (r), V(r) are functions depending only of » and g is the gravitational coupling
constant. Then, the corresponding field equations are [1]
(1-gU)rV"+2V")-grVU"—-2gVU' - 2grV'U' =0, (3.11)
2grU'(1-gU) 2U —-gU? =0. (3.12)
The general solution of the equation (3.12) is [1]

1+ 144
U(r)=—_ 1 (3.13)
g

b

where a is an arbitrary constant of integration. Choosing a = - 2Gm, the solution (3.13)gives the
Schwarzschild metric [1]:

2
ds? = d+G+r2(d62 +sin? Gdgoz)—(l - 2Gm]dz2. (3.14)
m r
1_7
r

Then, we obtain from (3.11) two corresponding solutions for SU (2) gauge potentials:

Vl(r)=1/1+%, Vz(r)=‘/r:a. (3.15)




These results show that there are only gravitational couplings into the considered model but no
SU (2) internal couplings because the solution we obtained do not contains the SU (2) coupling

constant.

The model presented here allows the quantization of the gravitational field by using path
integral method [10] on the same way as for internal gauge theories. Because the gauge group G
is considered here as a pure internal symmetry, the property of renormalization is assured for our
unified gauge model [1, 10].

3) Solutions for gauge fields on non-commutative space-time

We suppose now that the space-time is non-commutative with the coordinates x" = (r,ﬂ,gp,t)
satisfying the following commutation relations:

lx”,xvjzl@w, (3.16)
where @Y =-@"™ are constant parameters. We will consider the space-space non-
commutativity [2] when the only non-vanishing components are 07 =-0* =0, where Oisa

constant parameter of deformation. To describe different gauge fields we use the star product "+"
defined by relation [2, 3]:
i®u"éu®év
(D P )x) = D(x)e> P(x). (3.17)
Let us suppose now that the gauge group is SU (2)>< SO(1,4) and denote the gauge fields

(potentials) by AS (x), éfl (x) We define the metric of the non-commutative space-time as

A 1 N A + A7 N +
gw(x,®)=5n,-j(ed*eé +é, *é, ) (3.18)
Then,using the Witten-Seiberg map [2, 3, 13], we obtain the following corrections [2, 3]:
- for the internal SU (2) gauge fields (with the commutative solution (3.7)):

A3 +cos@+%sin0 ®+O(®2l

(3.19)
Al =u0+g+0(®2}
r
- for the Schwarzschild metric
R 1 ald4r-3a
8 = - (2 )2924‘0(94)7
1= 16r (r-o)
r
2r* —17ar+17a*
- 2 2 4
=r 0°+0(0"), 3.20
&2 32r(r-0c) 67) (3.20)
2 2 2
§33=r2sin20+(r +ar-a )cos 9-0&(21‘-0()02_{_0(04),
167(r-a)
& =—(l—ﬂj——“(8r'1f“)ez +0(8*).
r 167

where o =2Gm . These solutions can be used to the determination of some quantum
characteristics of the black holes such as temperature, entropy, etc.



3.2. Establishing conditions non-singular solutions of the field equations

We construct now an integral of the action of the gauge fields efl (x) under the form [2, 14]:

1
Sg = _%J‘d%[ﬁﬂ + ¢ (t) 1(11)+ (02(t) 2(12)+ V(Q’la%l )]= (3.21)
where [/, and [,are two invariants of theory, and ¢, (t), ¥, (t) are Lagrange multipliers
introduced in order to assure the existence of nonsingular solutions. The potentials V((pl,(pz)

satisfy the conditions:
oV oV
f1(11)=__: fz(lz):__-
o9y 0P,
A possible form of the functions fl(l 1) and f, (I 2) is [14]:
H)=1,. fH0)=— . 1,=F-\3@rE ~F?)? I, =arFr - F*. 323)

If we know the metric of the space-time, we can determine then the functions f, (I 1 ) o ([ 2) and

(3.22)

the potential V((D1 NN )

3.3. Construction of a non-singular solution

We consider the case of the Robertson-Walker metric

8w = a’iag(a(t)z,rza(t)z,rza(t)2 sin” 6,-1)
and suppose that ¢, (t) =0. We denote ¢, (t) = go(t) and respectively V(O,go2 ) = V((p). Then,
imposing the variational principle 8S, =0 with respect to a(t) and @, (t) = (p(t), we obtain the

following conditions which assure the existence of non-singular solutions:
!

' 2 a2 2
H's[“—j — g, )= (3.24)
a H

where A is the deformation parameter of the Lie algebra [see eq. (1.8)]. These equations admit
the periodic solution:

o(t)= o, sin(ot), H(t)= (;% [cos(wz)—1], (3.25)

where ¢, is an integration constant and ® = 2 x 3V4) is the frequency of the gravitational field
described by the gauge fields efl (x) and Asvb (x) This solution has no singularities and is

associated with a negative cosmological constant A = —122% < 0. The case when this constant
is positive can be studied analogous by using the anti-de-Sitter group SO(2,3).

It is possible to obtain and other solutions without singularities supposing that the
cosmological “constant” itself has a dependence of time. Using the method described in this
section we can obtain non-singular solutions for case of gauge theories with internal groups of

symmetry.
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