
Classical and Quantum Models for the Gauge Fields 
- Stage 3 - 

 

Objective 1. Construction of the gauge invariant integral action 

 

1.1. The calculation of the integral action for the scalar field in the presence of gauge fields 

 

The gravitational field can be described like other fields (electromagnetic for example) by using the gauge 

theory. For such a purpose one can use as gauge group (of local symmetry) the Poincaré group ( )1,3ISO , the de-

Sitter group )1,4(SO  or anti-de-Sitter )2,3(SO , the group of affine transformations ( )RA ,4 , etc. The main 

problem appearing in such a theory is the quantization of the gravitational field. Any quantum theory, in 

particular those of the gravitational field, must be renormalizable. This property – renormalizability – is one of 

the most important problems of the quantum theory of gravitational field which is expected to be solved yet. 

 One possible way for obtaining a quantum theory of the gravitational field is to consider the 

gravitational gauge group ( ) ( )[ ].,2,3,1,3 etcSOISO as a purely inner symmetry [10]. This means that the space-

time coordinates do not change under the gauge group transformations, but the transformation formulas of the 

gauge and matter fields are correspondingly modified.   

In our project [stage 3/2009] we used as group of local symmetry a deformation of the de-Sitter group 

( )1,4SO  determined by a real parameterλ . This allows us to introduce a cosmological constant Λ  into the 

model whose value is precisely determined by the parameter λ  [1]. In the limit 0→λ  (a process which is 

named group contraction) the cosmological constant Λ  vanishes and the de-Sitter group contracts to the 

Poincaré group ( )1,3ISO . This means that a theory of the gravitational field based on the Poincaré group 

( )1,3ISO  is not adequate to construct cosmological models [10]. Thus, in our works we used the de-Sitter group 

(a deformation) in order to describe the gravitation by a model including the cosmological constant.  

The infinitesimal generators of the de-Sitter group ( )1,4SO  are 5,4,3,2,1,0,, =−= baJJ baab ; in what 

follows we denote them by 5αα JΠ ≡  and αβαβαββα Σ+=≡
2

1
LJM , 3,2,1,0, =βα , where αβL  are interpreted 

as the angular momentum operators and αβΣ  as the spin operators in a m-dimensional representation spanned 

by the matter field we are considering (denoted below by mjj ,...,2,1, =ϕ ). In the limit 0→λ  the generators 

αΠ  pass in space-time translations generators αP  corresponding to the momentum operators and βαM  do not 

change; they generate the Lorentz transformations and are interpreted as the total angular momentum operators. 

Then, we consider a multiplet of matter fields mjj ,...,2,1, =ϕ , whose dynamics is described  by the 

Lagrangian ( )
jjML ϕϕ α∂,  and construct the integral of action, supposed to be global invariant under the group 

( )1,4SO , in the usual form 

 ( )jjMM LxdS ϕϕ α∂= ∫ ,4 ,        (1) 

where ( ) 3,2,1,0, == µµxx  denotes the coordinates on the Minkowski space-time. Let us now suppose that the 

action MS is also invariant under the gauge (local) transformations of the de-Sitter group ( )1,4SO . In contrast 

with the usual models considered by other authors we will write the de-Sitter transformations (which are space-

time transformations) as purely inner transformations [1], i.e.: 

  ,ααα xxx =′→          (2a) 

  ( ) ( ) ( )( )( )xxx jjj ϕϕϕ Θ+=′→ 1 ,       (2b) 

where 
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Here, the quantities α
βt  depend only on the space-time coordinates 3,2,1,0, =µµx  and they have the expression

  νµ
µν

γ
β

γδ
βδ

γ
β ησδση xxxxt =−= 22 ;2 ,      (4) 

( )1,1,1,1−= diagµνη  being the Minkowski metric. In the last expression of Θ  from equation (3), the quantities 

( )xγε  and ( ) ( )xx δγγδ ωω −=  denotes the infinitesimal parameters (which depends on coordinates) of the de-

Sitter gauge group ( )1,4SO . 

 As usual, we introduce the gravitational gauge fields (potentials) ( )xBγ
α  and ( ) ( )xBxB δγ

α
γδ
α −=  which  

correspond respectively to the generators γΠ  and γδM . Then, we define the gauge covariant derivative 
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2
, +Π−=+∂=∇ .       (5) 

Equivalent, this derivative can be written under the form [1, 7, 9] 
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where 
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The transformation laws of the gauge fields γδ
α

γ
α BB ,  and implicitly γ

αe under the de-Sitter gauge group ( )1,4SO  

are obtained in our work [1]. 

 In order that the integral of action (1) to be also invariant under the de-Sitter gauge (local) group de-

Sitter we must change in the Lagrangian ( )
jjML ϕϕ α∂, , initial supposed global invariant, the ordinary 

differential derivative α∂  by the gauge covariant derivative α∇  and introduce the factor ( )γ
ε

11 det −− = ee  under 

the integral, where 
γ
ε

1−e  denotes the inverse matrix of γ
αε , i.e. γ

α

γ
ε

ε
α δ=−1ee . Therefore, the minimal extended 

action and invariant under the de-Sitter gauge group ( )1,4SO  has the expression 

  ( ) ( ) ( )( )xxLexdeS jjMjM ϕϕϕ α∇= ∫ − ,; 14 .      (8) 

In particular, if we consider a scalar real matter field ( )xϕ  with mass m, then the gauge invariant action under 

the de-Sitter group (considered as a purely inner symmetry group), has the form 

  ( ) 






 −= ∫ − 2214

2

1
; ϕϕϕϕ α mddexdeS a

M ,      (9) 

where γ
γ
αα ∂= ed . Here, ϕα∇  reduces to ϕαd  because the scalar field belongs to the trivial unit representation. 

 

1.2. The calculation of the integral action for the spinorial field in the presence of the gauge 

fields 

The concept of purely inner ( )1,4SO  symmetry together with the gauge principle allows us to describe 

as previously the minimal coupling of the spinorial and gauge gravitational fields. In conformity with the 

concept of purely inner symmetry ( )1,4SO , the gauge fields do not interfere with the space-time structure a 

priori fixed by our convention (of purely inner symmetry) and the geometry of this space remains separated 

from the physics described by the ( )1,4SO  gauge fields. 

Let us consider now a spinorial field ( )xψ  having the mass m. The global invariant action under the 

( )1,4SO  group is given by the expression 

 ( ) ( )∫ 




 −∂−∂= ψψψγψψγψ α
αα

α m
ii

xdSM
22

4 .     (10) 

Here, αγ  are the Dirac matrices satisfying the usual Clifford algebra { } αββα ηγγ 2, =  and the spin operators 

have the expressions [ ]βααβ γγ ,
2

i
=Σ . 

 Due to our previous hypothesis of minimal coupling, we can write the gauge invariant action of the 

spinorial field ( )xψ  under the form 



  ( ) ( ) ( )∫ 




 −∇−∇= − ψψψγψψγψψψ α
αα

α m
ii

exdBeSM
22

,;, 14 .   (11) 

Because ( )xψ  is a spinorial field, the action (11) includes now the gravitational gauge fields γ
αB   and γδ

αB  

through the gauge covariant derivative α∇ .  

 

1.3. The calculation of the action integral for the massive vector field in the presence of the gauge 

fields 

 We consider now the case of a vector field ( ) 3,2,1,0, =µµ xA  with non-null mass m. The integral of 

action which is global invariant under the de-Sitter group ( )1,4SO  has the  expression 

  ∫ 




 +−= α
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αβ AAmFFxdSM
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,      

where αβααβ AAF ∂−∂=  is the strength field tensor associated to ( )xAα . In particular, we can consider the 

gauge fields ( ) ( ) k

k TxAxA αα =  with values in the Lie algebra,  associated to an internal symmetry group, for 

example  )(nSU , having the infinitesimal generators NkTk ,...,2,1, = . The spin operators have in this case the 

expressions ( ) ( )γ
β

δ
α

δ
β

γ
α

γδ
αβ ηηηη −=Σ i2  which correspond to the vector representation of the de-Sitter group. The 

integral of action gauge invariant under the de-Sitter symmetry group corresponding to the minimal coupling is 

  ( ) ∫ 
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where αββααβ AAF ∇−∇=
~

. The gauge covariant derivative of the vector field ( )xAα  has the expression  

γ
γ
αγ

γ
αββαβα λ ABABAdA +−=∇ . If ( )xAα  is a ( )1U  gauge field, then its transformation law under the group 

( )1U  is ( )xAA θααα ∇+→ , where ( )xθ  is the parameter (which depends on coordinates) of ( )1U . It is 

important to observe that in general the tensor αβF
~

 is not invariant under ( )1U . 

 In the case when the gauge theory is defined on a non-commutative (NC) [5, 6] we used the covariant 

star-product ∗  [4] between fields. The integral of action for the gauge fields ( )xAα  has then the expression 

  δα
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βγ
αβ FGFGxd

g
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S ˆˆˆ
22

1 4 ∗∗∗−= ∫ ,       (13) 

where αβĜ  denotes the gauge covariant metric of the NC space-time, αβF̂  is the strength tensor of the gauge 

fields ( )xAα  and g is the gauge coupling constant. In the case of a matter scalar field ( )xϕ , a possible form of 

the integral of action which corresponds to a renormalizable model in all orders of a perturbative theory is [15] 

  ∫ 
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Applications  to the case of  gauge fields with spherical symmetry are given in our papers [2, 3, 4, 8]. 

 

 Objective 2. The calculation of the matter partition function in the presence of the gauge fields  

 

   2.1. Obtaining the one-loop partition function for the scalar field in the presence of the gauge fields 

In our works we determined the one-loop partition function [ ]eZϕ  and studied the behaviour of this function 

under a scale transformation (re-scaling). The contribution of the scalar field ( )xϕ  to the partition function is 

given by the expression [11] 

    [ ] ( )∫= eSi MeDeZ ;ϕ
ϕ ϕ ,        (14) 

where ( )eSM ;ϕ  is the gauge invariant action under the de-Sitter group of the scalar field ( )xϕ  given in (9). 

After a partial integration the formula (9) can be written in the form 

    ( ) ( )( )ϕϕϕ ϕ eMeSM ,
2

1
; = ,       (15) 



where ( ) 2meM −∇−∇= α
αϕ  is the field hyperbolic operator. In (15) we denoted by  ( )ϕχ ,  the scalar product 

on the space of real scalar functions: ( )∫ − ϕχϕχ 14, exd . After a Gaussian integration the expression (15) can 

be written in the standard form 

    [ ] ( )




= eMeZ ϕϕ detln
2

1
exp .       (16) 

On the other hand, the functional determinant [12] of an operator M  can be expressed through the generalized 

zeta-function ζ as follows: 

    ( )Mu
du

d
M u ;;limdetln 0 µζ→−= ,      (17) 

where, by definition, ( ) uutrMMu −= 2;; µµζ  and µ  is a scale factor. Considering our operator ( )eMϕ , we can 

write (introducing the scale factor µ ) 

    [ ] ( )( )[ ]eMeZ ϕϕ µζµ ;;0exp; ′= .      (18) 

Making a scale transformation λµµµ =→ ~ , the partition function ϕZ  becomes [7, 9] 

    [ ] [ ] ( )( )[ ]eMeZeZ ϕϕϕ µζλµµ ;;0lnexp;;~ = .     (19) 

On the other hand, the zeta-function ( )Mu ;;µζ  can be expressed as Mellin transformation of the heat kernel 

[13] 
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u
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Using this expression we obtain the following transformation property of the zeta-function ζ  to the re-scaling 

λµµµ =→ ~  [9] 

    ( ) ( ) ( )MMM ;;0ln2;;0;~;0 µζλµζµζ +′=′ .     (21) 

This result shows that the transformation of the functional determinant [see the definition (17)] under re-scaling 

is fully determined by ( )M;;0 µζ . Therefore, in order to analyse the renormalizability property of our de-Sitter 

gauge theory it is necessary to calculate first the function ( )M;;0 µζ  using for M  one of the above 

operators: ( )eMϕ  - for the scalar field [Eq. (15)], ( )BeM ,ψ  - for the spinorial field [Eq. (23)], or ( )BeM F ,  - for 

the case of the vector field [Eq. (29)]. The results will be presented below into the Objective 3. The study of 

renormalizability properties of the formulated theory. 

 

2.2. Obtaining the one-loop partition function for the spinorial field in presence of the gauge fields   

         In the case of a spinorial field ( )xψ  the partition function is given by the Grassmann integral functional 

[7] 

  [ ] ( )[ ]∫= BeiSDDBeZ M ,;,exp, ψψψψψ ,      (22) 

where ( )BeSM ,;,ψψ  is the gauge invariant action  in (11). As previous, we can write  

   [ ] ( )




= BeMBeZ ,detln
2

1
exp, ψψ ,       (23) 

where the hyperbolic operator of field fluctuations ( )BeM ,ψ  has the form [9] 

 ( ) 2

2
, mF

i
DDBeM −Σ+−= αβ

αβ
α

αψ .       (24)               

Here, ααα BD +∇=  and αβF  is the 2-forma of curvature of the ( )1,4SO   gauge fields ( )xBγ
α  and 

( ) ( )xBxB δγ
α

γδ
α −=  [9]. Using the definition (17), we obtain from (23) the following expression of the partition 

function of a spinorial field with the scale factor µ  

    [ ] ( )( )




 ′−= BeMBeZ ,;;0
2

1
exp,; ψψ µζµ ,     (25) 



Using the property (21) we deduce the transformation formula of the partition function [ ]BeZ ,;µψ  under the re-

scaling λµµµ =→ ~   

 [ ] [ ] ( )( )[ ]BeMBeZBeZ ,;;0lnexp,;,;~
ψψψ µζλµµ −= .    (26) 

Therefore, in order to analyse the renormalizability property of our de-Sitter gauge theory, we must determine  

the zeta-function ( )( )BeM ,;;0 ψµζ . The results will be presented below in Objective 3 where we study the 

renormalizability using the one-loop partition function for the spinorial field. 

2.3. Obtaining the one-loop partition function for massive vector field in presence of gauge fields 

 The contribution of a massive vector field αA  to the partition function has the expression 

    [ ] ( )[ ]BeAiSADBeZ MA ,;exp, α∫= ,      (27) 

where ( )BeASM ,;  is the gauge invariant action in presence of gauge fields [Eq. (13)]. In order to calculate this 

functional we use the Fadeev-Popov method [12]. Namely, we chose a gauge determined by a gauge condition 

[ ] ( )xGAF A =θ  and insert the unit [ ] ( )( ) ( )AMxGAFDAD FA det1 −= ∫ θ
α δθ  into the expression (27). Then, we 

obtain 

  [ ] [ ] ( )( ) ( ) ( )[ ]BeAiSAMxGAFADDBeZ MFA ,;expdet, −= ∫ θ
αα δθ .            (28)  

Because the Fadeev-Popov determinant ( )AM F  is gauge invariant, we can make the transformation 

θααα ∇+→ AA  in Eq. (28) without affecting the result. In particular, if we chose the gauge condition in the 

form [ ] α
α

θ
α AAF −∇= , then the Fadeev-Popov operator ( ) α

α∇−∇=BeM F , , the integral (28) becomes of 

Gaussian type and can be calculated resulting 

  [ ] ( ) ( )




−= BeMBeMBeZ FFA ,detln
2

1
exp,det, .     (29) 

Like in the previous two cases, we can prove that the transformation of this functional under a re-scaling 

λµµµ =→ ~  is fully determined by the zeta-function ( )( )BeM F ,;;0 µζ . We present tits calculation below in 

Objective 3. 

 

Objective 3. The study of properties for the developed theory  

                            3.1. Analysis of the renormalizability theory 
The calculation of the effective quantum action for different types of fields which can be regularized and 

renormalized at the one-loop level, we can use the generalized ζ -function [1, 9]. In many cases (for example in 

the calculation of the effective action) this method naturally leads to the vanishing of the divergences 

maintaining physical terms in the result. In particular, if we consider the case of the scalar field ( )xϕ , whose 

hyperbolic operator of fluctuations is ( )eMϕ , then the effective action is given by the derivative of the ζ -

function calculated for 0=u [14] 

   [ ] ( )( )
0

;;
2

1
,

=
=

ueff eMu
du

d
eS ϕµζϕ .      (30) 

It is important to remark that there is an important relationship between the presence of  poles for ζ -function 

and the coefficients ( ) ,.....2,1,0, =kxck  of the heat kernel ( )yxuK ,; . Using these properties, we present below  

our results for the coefficients 21 , cc  ( )10 =c  and determine the effective minimal action for the scalar, , 

spinorial and massive vectorial fields which is compatible with renormalizability requires up to the one-loop 

level.  

  

3.2. Obtaining the anomaly terms 

 In order to obtain the function ( )M;;0 µζ , which fully determines the partition function, we use the 

expression (20) of the ζ -function. Then, introducing the result into the expression of functional integral and 

taking the limit 0→u  we obtain the singular terms which are the anomalies of the considered model. 

Renormalizability of any theory which includes dynamical gauge fields requires that these anomalies, which are 

polynomials of gauge fields (in our case γ
αe  and γδ

αB ) and their derivatives, can be absorbed in classical action 



of the gauge fields. Therefore, in order to determine explicitly the dynamics of the gauge fields in accord with 

the renormalization requirements, we must determine the corresponding ζ -functions. 

 We write the fluctuation operator in the general form EDDM += α
α , ααα ND +∇=  where E  and αN  

are the operators whose expressions depend on the type of the considered fields (scalar, spinorial, vectorial). 

We remember that the strength tensor αβF , associated to our SO(4,1) gauge fields has the components: 

γδ
αβ

γδ
αβ

γ
αβ

γ
αβ RFTF ≡≡ ;  (these notations show the relation with the geometrical models defined on Riemann-

Cartan space-times with torsion γ
αβT  and curvature γδ

αβR ). In our works we considered only the case 0=γ
αβT , i.e. 

the torsion vanishes. 

 The heat kernel ( )yxuK ,;  satisfies the equation 

  ( ) 0,; =






 +
∂
∂

yxuKM
u

x ,        (31) 

where xM  denotes the derivative  of the operator M  with respect of the x variable. In the limits xy →  and 

0→u  we can use the asymptotic expansion  
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Here, d denotes the dimension of the space-time which in our case will be d = 4. The expressions of the 

( )yxr ,2  function and the coefficients ( )yxck ,  in the limit xy →  are calculated by imposing the condition that 

(32) verifies the heat kernel equation (31). By a direct but laborious calculus, we obtained the expressions 
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where [ ]βααββααβ AAAAF ,
~

+∇−∇= . 

 Because the anomalies come from the region corresponding to small values of u ( 0→u ), we can use 

the asymptotic formula (32) for the heat kernel. Then, by partial integrating with respect to u of (20) and 

maintaining only the contribution 
2

1
=k  in the sum over k, we obtain 

  ( )
( )

( )xTrced
i

M d

d

d

2

1

2/
4

;;0 −∫=
π

µζ .       (34) 

 

 3.3. Applications of the obtained results to the case of the scalar, spinorial and vectorial fields  

 In the case of the scalar field the operator of fluctuations ( )eMϕ   can be obtained from above expression 

of M choosing: 2mE −= and 0=αN . Then, using Eq. (34) we calculate ( ))(;;0 eMϕµζ  and introducing the 

obtained expression in Eq. (18) we obtain the anomaly term for the scalar field. For the spinorial and vectorial 

fields the method of calculus is analogous, but the operators E  and αN  have specific forms. For example, for 

spinorial field we have ( )βγ
α

βγ
αβγα TB

i
N +Σ=

4
 and this expression simplifies if 0=βγ

αT (vanishing torsion). 

The results are contained in our works [1, 7, 9 ]. 

 Using these results we can construct the minimal action for the gauge fields. Like in any classical gauge 

field dynamics, consistent with the renormalizability, there are present anomalous terms. In our model, 

considering 0=βγ
αT , the minimal classical action for the gauge fields γ

αe  and γδ
αB  associated to the ( )1,4SO  

group must contain the following terms, if we neglect the total divergences [7] 

 ( ) ( )∫ 



 +++Λ−−= αβγδ

αβγδ
γβδ

βδ
α

αγπ
RcRRbRaRR

G
xdBeSgauge

24 2
16

1
, .   (35) 

Here, G is the gravitational constant and cba ,,  are coupling constants. We can see that by using the de-Sitter 

gauge group ( )1,4SO , the cosmologic constant automatically enter into the expression of action; it has the value 



212λ−=Λ  [1, 9]. It is important to remark that the action integral gaugeS  from Eq. (35) is on one hand invariant 

with respect to the gauge (local) de-Sitter transformations and, on the other hand, it is invariant with respect to 

global Poincaré transformations on the Minkowski space-time. 
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