
CLASSICAL AND QUANTUM MODELS FOR GAUGE FIELDS 
- Stage 4 - 

 
Objective 1. Developing analytical computing programs for studying the gauge 
fields defined over commutative and non-commutative space-times. 

1.1. Elaborating of computing routines for the gauge field tensor 
A. The case of gauge fields defined over commutative space-times 
We consider a system of matter fields -the coordinates on 

the space-time M, described by the Lagrangian , which is 
global invariant under the transformations of a Lie group of symmetry G. The infinitesimal 
generators  satisfy the equations 

  ,      (1) 

where  are the constants of structure of the group G, and the fields  belong to a 
m-dimensional representation of G. If we suppose that the group G is also a gauge (local) group 
of symmetry, then we must introduce the associated gauge fields , which are the 

components of a Lie algebra-valued 1-form . We define then the curvature 2-
form 

   ,      (2) 

and we obtain the following expressions of its components 
   ,    (3) 
where g is the gauge coupling constant. 
 The integral action of the gauge fields  is 

   ,     (4) 

and it allows us to obtain the field equations by imposing the minimum action principle. 
 For any effectively application we need to calculate first of all the components  of 

the tensor associated to the gauge fields . Obtaining these components is laborious and this 
imposes us the use of analytical computing programs. For such a purpose we developed some 
computing routines which are adequate for running under MAPLE Program. They allow to 
introduce the components of the gauge fields corresponding to different values of the space 
index  and the group index a, this operation depending therefore on the dimensions of space-
time M and the gauge group G.  
 If the dimension of the considered gauge group is equal to that of the space-time, then the 
components of the gauge fields (potentials)  can be introduced directly with the 
instructions:  
 > grdef(`A{^a miu niu)`); > grcalc(A(up,dn,dn));> grdisplay(_); 
Having these components, the program allows us to compute then the components  
associated to the gauge fields, by using the definition (3): 

> grdef(` {^a b c}`); 
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>grdef(` {^a miu niu}:= {^a niu, miu}- {^a miu, niu}- {^a b c} {^b  
miu} {^c miu}`); 

If the dimension of the gauge group differs of that of the space-time, the different components are 
introduced individually for any gauge field, i.e.  and respectively 

, by the same instructions. However, in our works we developed a computing 
program which allows us to introduce directly these quantities, even in the case when the two 
dimensions are different [4]. For such a purpose we used the possibility of working with strings in 
the MAPLE program. For example, the components of the gauge  can be introduced using 
the following instructions: 
 > with(StringTools); 
 > for a from 1 to n do 
 > X = cat(`A`,a,`{miu}`): grdef(X): grcalc(X): grdisplay(_): 
 > end do; 
The components of the associated tensor  are computed then by using the definition (3) 
and the same facilities offerd by “String Tools”. The program is presented in detail in our work 
[4]. 

As an example of application of the above procedure, we consider the model with 
spherical symmetry and having  as gauge group, i.e. the symmetry group is the direct 
product of the gravitational gauge  and the group [Objective 2].  

B. The case of gauge fields defined over non-commutative space-times 
In this case the coordinates of the space-time do not commute and they satisfy the 

relations 
   ,     (5) 

where  is a bi-vector [2, 3]. In order to develop a gauge theory on such a space, 
we introduce a new product between fields or different functions, which is denoted by the symbol 
„ ” and is named the star product. Because the components of gauge fields and the associated 
tensor are Lie algebra-valued differential forms, we defined the star product adequately for such 
quantities [2, 9]: 

   .    (6) 

Here, the symbol „ ” denotes the exterior product, and  are bi-linear operators which 
are chosen so that the associativity property of the star product is satisfied.  The gauge field tensor 
has an expression on the same form (2), but the commutator of two differential forms  and  
is written by using the star product [2, 3] 
  ,     (7) 

where  and  denotes the rank of the two differential forms  and respectively . In the 

computing routine we have to introduce first the bilinear operators , then the 

components of the gauge fields , and finally we computed the associated tensor . 
The hat symbol „^” over different quantities denotes their corresponding expressions in the gauge 
theory on the non-commutative space-time. We used the Seiberg-Witten map [2] in order to 
calculate these quantities, supposing that we have a  gauge theory. The corresponding 
expressions up to the first order  are [2, 10] 
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  ,     (8) 

  .   (9) 

In our computing program, which is presented in detail in the work [7], we used the following 
instructions for obtaining the first order quantum corrections: 
  > grdef(` {^a miu}:= - theta{^rho ^sigma} {^b rho} ( {^c sigma miu}+ {^c sigma 

miu}) {^a b c}/4`); 
  > grdef(` {^a miu niu}:= -theta{^rho ^sigma} ( {^b rho} ( {^c miu niu, 

sigma}+ {^c miu niu sigma})-2 {^b miu rho} {^c niu sigma}) {^a b c}/4; 
  > grcalc ( , ); 
  >grdisplay(_); 
Some specific applications are presented below to the Objective 2. 

1.2. Construction of the program for obtaining the field equations  
First of all, we considered the case of an internal gauge group of symmetry, for 

example U(N) or SU(N). Imposing the extremum condition on the integral of action (4), 
we obtain the following field equations 

  ,     (10) 
 Our computing program includes instructions for introducing the gauge field components 

, the associated tensor , and then the field equations can be written as follows: 
> grdef(`EQ{^a miu}:=F{^a mu niu,^miu}+g*f{^a b c}*A{^b^miu}*F{^c miu  niu}`); 
> grcalc(EQ(up,dn); 
> grdisplay(_); 

In fact, these instructions allow to compute the left-hand side of the equation (10), and the field 
equations are obtained by equaling the obtained expressions with zero. Secondly, we constructed 
a computing program where the gauge group is  and the results were then 

particularized for . The  gauge fields are denoted by , and those 

corresponding to the group  by . The SU(N) gauge tensor is 
computed by using the expression: 
   ,    (11) 

where  denotes the   gauge coupling constant and  is the gauge covariant 
derivative. The field equations are obtained as previous by imposing the principle of minimum 
action for the action of the two gauge fields and using the facilities offered by “StringTools” [4]. 
For such a purpose, we introduced first the components of the gravitational energy-momentum 
tensor  and the currents  associated to the group SU(N) [7]. The instructions for computing 
the field equations are: 
    EqSUN:= proc() 
       for i from 1 to m do 
       X:=cat(`EQ`,i,`{nu}:=Ac`,i,`{mu nu,^mu} +  
       g1*eta1{nu sigma}*J`,i,`{^sigma}`); 
       grdef(X); grcalc(X); grdisplay(_); 
         end do; end proc: 
    EqGrav:=proc() 
       grdef(`gb{mu nu}:=eta1{alpha beta}*Gbinv{mu ^alpha}* 
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       Gbinv{nu ^beta}`,sym={[1,2]}); grcalc(gb(dn,dn)); 
       #grdef(`T{^nu alpha}:= here is the expression of  
       #the gravitational energy-momentum tensor 
       grcalc(T(up,dn)); 
       grdef(`EX{^mu ^nu alpha}:=(1/4)*eta1inv{^mu ^rho}* 
       eta1inv{^nu ^sigma}*gb{alpha beta}*F{^beta rho sigma}- 
       (1/4)*eta1inv{^nu ^rho}*F{^mu rho alpha}+ 
       (1/4)*eta1inv{^mu ^rho}*F{^nu rho alpha}- 
       (1/2)*eta1inv{^mu ^rho}*kdelta{^nu alpha}* 
       F{^beta rho beta}+(1/2)*eta1inv{^nu ^rho}* 
       kdelta{^mu alpha}*F{^beta rho beta}`); 
       grcalc(EX(up,up,dn)); 
       grdef(`EQG{^nu alpha}:=EX{^mu ^nu alpha,mu}+ 
       g*T{^nu alpha}`); grcalc(EQG(up,dn)); grdisplay(_); 
       end proc: 

1.3. Elaboration of programs for obtaining solutions of the field equations  
In order to obtain solutions of the field equations, we elaborated an analytical program 

corresponding to case of gauge group . The gauge fields are determined in this case 
only by two functions:  - for G and  - for . Using our program, we obtained the 
following two coupled field equations: 

,   (12) 

.      (13) 
The solutions of these equations are obtained by means of computing package dsolve, included in 
MAPLE program, as follows: 
 > grdef(`G{^alpha mu}`); 
 > grdef (`A{^a mu}`); 

> grcalc(G(up,dn)); grcalc(A(up,dn)); 
> ode1:=diff(U(r), r) = (g*U(r)^2-2*U(r))/(2*g*r*(1-g*U(r))); 
> dsolve(ode1, U(r)); 
> ode2:= (1- g*U(r))*r*diff(V(r), r, r)+2*diff(V(r), r)=g*r*V(r)*diff(U(r), r, r)+ 
   2*g*V(r)*diff(U(r), r)+2*g*r*diff(U(r), r)*diff(V(r), r); 
> dsolve(ode2,V(r)); 

The solutions are:   

,   (14) 

where a and  are arbitrary constants of integration. Choosing , the solution  
will correspond the  Schwarzschild metric [7]. 
Objective 2. Applications of the computing programs to the gauge theory with symmetry 
group  
 2.1. Applications of computing programs and routines to the gauge models with 
spherical symmetry 
 A. Commutative gauge theory. As a first applications of our computing programs, we 
considered the case when the gauge group is , where  is an internal 
gauge group of symmetry and  is the de-Sitter group. This model of gauge theory 
describes simultaneously the interactions between internal and gravitational gauge fields. The 
associated spherically symmetric gauge fields are chosen under the form: 
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      -for  

 , - for  
where  and  are functions only of radial variable r. The corresponding field equations are  

   ,    (15) 

   .       (16) 
The analytical solutions were obtained by using our computing program. The instructions and 
results are: 
 > ode1:=r*diff(u(r),r,r)+2*diff(u(r),r); 
 > dsolve(ode1); 
 > u(r) := C1+C2/r; 
 > ode2:=r*diff(N(r),r)+N(r)-1+r^2*(diff(u(r),r))^2+1/r^2+Lambda*r^2; 
 > N(r) = -1/3*Lambda*r^2+1+1/r^2*C2^2+1/(r^2)+1/r*C3; 
The expressions for  şi  contains three arbitrary constants of integrations  

and . Choosing the adequate values , these 
solutions describe a colored black hole with the electrical charge  and magnetical 
charge  [6, 11]. 

B. Non-commutative gauge theory. We constructed a model of gauge theory having 
 as gauge group over a non-commutative torsionless [2,6]. The  gauge fields, denoted 

by   [2, 5], are chosen  now under the form 

 ,  (17) 
where  are functions depending only the radial variable r. The connection coefficients are 

determined only by one unknown function : . We suppose that 

the function  determines also the non-commutativity parameters: 

     (18) 

We introduce first the components of the gauge fields  and  in our program. It 
contains a number of computing procedures which allow to obtain the torsion and curvature 
tensors ,  of the non-commutative space-time, then the covariant derivatives  

 and  of the torsion , curvatures  

 and the bi-vector  respectively, the quantum deformations of first order 

 for the gauge fields, the tensor associated to gauge fields and the metric of the 
space-time. The computing instructions for obtaining some of these quantities are: 
> grdef(` {^rho miu niu}:= {^rho miu niu}- {^rho niu miu}`); 
> grdef(` {^niu lambda rho sigma}:= {^niu sigma lambda, rho}- {^niu rho lambda, 

sigma}+ {^niu rho tau} {^tau sigma lambda}- {^niu sigma tau} {^tau rho 
lambda}`); 

> grdef(` {^niu lambda rho sigma}:= {^niu lambda sigma, rho}- {^niu lambda rho, 
sigma}+ {^niu tau rho } {^tau lambda sigma}- {^niu tau sigma} {^tau lambda 
rho}`); 



 6 

> grdef(`theta{^miu ^niu}`); 
> grdef(` {^miu ^niu rho sigma}:=theta{^miu ^lambda} {^niu lambda rho sigma}`); 
>grdef(` {lambda ^miu ^niu}:= theta{^miu ^niu, lambda}+ {^miu sigma 

lambda} theta{^sigma ^niu}+ {^niu sigma lambda} theta{^miu ^sigma}`); 
> grdef(` {^a miu niu}:= -theta{^rho ^sigma} ( {^b rho} ( {^c miu niu, 

sigma}+ {^c miu niu sigma})-2 {^b miu rho} {^c niu sigma}) {^a b c}/4; 
 Having these quantities, we write then the field equations and obtain the 
analytical/numerical solutions. The corresponding procedures and instructions are presented in 
section 2.2 (analytical solutions) and 2.3 (numerical solutions). 
 2.2. Computing of analytical solutions  
 As an example, we compute the solution of the field equation satisfied by the gauge 
potential  corresponding to the non-commutative  gauge theory [2, 8]. The 
instructions are: 
 > ode:= diff(y(r),r,r)* y(r) = 2* diff(y(r),r)^2; 
 > dsolve(ode, y(r)); 
and the program gives the solution , where  and  are arbitrary 
constants of integration whose values are determined by the initial conditions: 

. Then, we obtain  and the solution becomes 
. The plot of this function (see section 2.3) can be obtained by using the 

instructions: 
 > y(r):=1/(1-r); > plot(y(r), r = -2..2, y = -2..2); 

The program allows us to obtain also the analytical solutions for a system of coupled 
equations, for example the equations (15) and (16). If the considered system do not admit 
analytical solutions, then we must use numerical methods as it is described in the following 
section. 

2.3. Obtaining numerical solutions and 2D and 3D plots 
The computing program allows us to solve numerically some differential equations and 

plot the obtained results. We give the computing instructions also for the case of above equation: 
with(DEtools): 
> DEplot(diff(y(x),x$2)*y(x)=2*diff(y(x),x)^2,y(x), 
> x = -2.5..1.4,[[y(0)=1,D(y)(0)=1]],y=-4..5,stepsize=.05); 
de1 := {(D@@2)(x)(t)*x(t)=2*diff(x(t),t)^2}: 
> init1 := {x(0)=1, D(x)(0)=1}: 
> F := dsolve(de1 union init1, {x(t)},type=numeric, method=mgear, 
> value=array([0,-.2,-.4,-.6,-.8,0,.2,.3,.4,.5,.6,.8])); 

The table with numerical values and the 2D-plot are presented below. From the table we can see 
that the program give also and numerical values for the derivative of first order of unknown 
function A(r). 

r A(r)  
- 0.8 0.5555556658 0.3086420107 
- 0.6 0.6250001475 0.3906251679 
- 0.4 0.7142857491 0.5102039807 
- 0.2 0.8333333391 0.6944443349 

0 1 1 
0.2 1.250000270 1.562501224 
0.4 1.666667835 2.777784075 
0.6 2.500004736 6.250033069 

 0.8 5.000030784 25.00036772 
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In the case when the solution depends of two variables, we can use the package plot3d, specifying 
the domain of values we need. For example, in order to obtain the 3D-plot of the following 
function , we use the instructions:  

> plot3d({sin(theta)/(1-r)}, theta = -Pi..Pi, r = -3..3); if . 
 Objective 3. Computer-assisted study of the gauge field dynamics  
 3.1. Formulation of a dynamic model of gauge theory with  as 
structure group 
 The gauge potentials of the model are denoted by  - in the case 

of the group  and by ,  - in the case of the 

group . They describe the internal non-abelian gauge fields and gravitational field 

respectively. If we use the general definition (2), then we can construct the tensors  and 

 associated to these fields. The integral of action for this system of fields has the 
expression 

   ,   (19) 

where  and . This integral corresponds to the standard theory of 
gravitation interacting with the non-abelian gauge fields. As an application we consider the case 
when the gauge group is  [see section 2.1].  
 We introduce into our model also a scalar matter field , having the mass m, which 
is described by the Lagrangian 

   ,   (20) 

where f is the constant of self-interaction. Thus, we obtain a dynamic model whose vacuum state 
is doubly degenerated:  (this shows a spontaneous breaking of symmetry). The 

Lagrangian (20) gives the following field equation for : 

   .     (21) 

 3.2. Construction of computing program 
 We use the routines dsolve, PDEtools and plot3d in order to determine the solution of the 
equation (21) and plot the function . For such a purpose, we use the following sequence of 
instructions: 
 > PDE := diff(phi(t,x),t,t)-diff(phi(t,x),x,x)=phi(t,x)-phi(t,x)^3; 
 > struc := pdsolve(PDE,HINT=f(t)*g(x)); 
 > plot3d(phi(t,x), t=-1..1, x=-1..1); 
  

The solution obtained with this program is 
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                   (22) 
For any fixed values of the time t, it is a solution of kink-type (see the figure for the values 

 of the time). The integration constants have been convenient chosen for the 
three curves. Therefore, by this way we can study the dynamic evolution of the field  in 
the considered model of gauge theory with spontaneous symmetry breaking. 
  
 3.3. Simulation of interaction processes between matter fields mediated by gauge 
fields 
 The quantization of gauge fields and the study of different types of interactions is 
obtained by the method of functional integral. We consider a system containing a multiplet 

 of spinorial fields, a multiplet  of charged scalar fields, a multiplet  of gauge 

fields and a system of ghost fields . The Lagrangian for such a system contains terms 
corresponding to each multiplet of fields and also the interaction terms. For example, the gauge 
fields with gauge -  and the spinorial fields interacting with gauge fields are described, 
respectively, by the following terms: 

  ,  

 ,     (23) 

where  is the coupling constant. The Propagator of the gauge fields in momentum 
representation has the form 

   .    (24) 

With these results we can compute the expressions associated to any vertex or loop of interaction 
from a Feynman diagram. For example, in the cases of spinorial and gauge field or the self-
interaction of gauge fields we have, respectively, the following expressions:  

,

. 
           (25)  
 In our works, we developed a computing program of the above expressions which allows 
to simulate different interactions between matter and/or gauge fields. We give here some 
instructions for computing the first vertex expression of (25) in the case of  group: 
 > grdef(`gamma0{miu niu}`); grdef(`gamma1{miu niu}`); grdef(`gamma2{miu niu}`);  
    grdef(`gamma3{miu niu}`); 
 > grdef(`T1{c b}`); grdef(`T2{c b}`); grdef(`T3{c b}`); 
 > grcalc(gamma0(dn,dn), gamma1(dn,dn), gamma2(dn,dn), gamma3(dn,dn), T1(dn,dn)); 
T2(dn,dn)); T3(dn,dn)); 
 >grdef(`V02{a b c d}:= g*gamma0{a b}*T2{c d}; 
 > grdisplay(_); 
 Analogous, we can compute the metric components  and the constants of structure 

 of   group in order to obtain the expression of the second vertex in (25). For any 
other vertex or loop, the calculations are very laborious, and this shows us the utility of 
computing programs in obtaining of the corresponding results.  
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